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Abstract. This paper studies the distributed leader-follower output consensus problem for4
continuous-time uncertain multi-agent linear systems in general input-output forms. Specifically,5
we extend the well-known output feedback indirect model reference adaptive control (MRAC) and6
develop a fully distributed output feedback indirect MRAC scheme to achieve closed-loop stability7
and asymptotic leader-follower output consensus. Compared with the existing results, the proposed8
distributed MRAC scheme has the following characteristics. First, the orders of each agent’s pole/zero9
polynomials, including the followers and the leader, can differ from others, and the parameters in each10
follower’s pole/zero polynomials are unknown. Second, the proposed adaptive control law of each11
follower solely relies on the local input and output information without requiring the state observer12
and the structural matching condition on the followers’ dynamics, commonly used in the literature.13
Third, for any given leader with a relative degree n∗, the leader-follower output tracking error and its14
derivatives up to the n∗-th order converge to zero asymptotically, which has never been reported in15
the literature. Finally, a simulation example verifies the validity of the proposed distributed MRAC16
scheme.17

Key word. Model reference adaptive control, distributed output feedback, multi-agent systems,18
leader-follower consensus19

MSC codes. 93B52, 93C15, 93C4020

1. Introduction. Multi-agent systems (MASs) focus on the joint behavior of21

autonomous agents. In the past decades, researchers in various fields focused on how22

agents cooperate with each other and revealed many interesting phenomena [3, 14].23

A fundamental problem in MASs is designing a control law for each agent that solely24

relies on neighborhood information, so that the networked system can achieve specific25

tasks such as formation, swarming or consensus. Several prestigious papers [4, 11]26

have further highlighted the important and fundamental problems the cooperative27

control of MASs suffers from.28

Many remarkable results have been reported to deal with various multi-agent29

distributed control and coordination tasks, e.g., consensus/synchronization [20], for-30

mation control [8, 36], bipartite consensus [18, 39], and containment control [7, 19].31

Since the agents must agree on their respective tasks in cooperative control, the con-32

sensus control of a multi-agent system (MAS) has been a popular research topic.33

Currently, there are mainly two consensus control strategies: the behavior-based (or34

leaderless) strategy [17, 24] and the leader-follower strategy [9, 43]. The main task of35

a consensus control problem is to design appropriate distributed consensus protocols36

to achieve consensus. However, designing distributed protocols is challenging due to37
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the interaction between agents [16].38

To date, the consensus problem has been extensively studied in the control com-39

munity. For instance, in [24, 26], the consensus problems for some simple linear MASs40

were investigated. Since then, the literature has addressed the consensus control for41

the case with noises [51], for general linear homogeneous MASs [15, 34, 46], some non-42

linear MASs, such as Lipschitz nonlinear systems [31], Euler-Lagrange systems [23],43

rigid body systems [27], nonlinear MASs with compasses[22] and fractional MASs44

[44]. Note that the well-known backstepping technique originally developed in [13] for45

nonlinear adaptive control design is still effective and quite popular for cooperative46

control design and analysis of MASs [40]. Furthermore, the output regulation tech-47

nique is also a powerful tool for cooperative control design and analysis, and many48

remarkable results have been published [35, 41].49

Adaptive control methods are widely used in various fields [42] in which the model50

reference adaptive control (MRAC) technique has attracted significant attention since51

it can simultaneously realize online parameter estimation and asymptotic tracking52

control for systems with large parametric/structural uncertainties [1, 10, 30, 37, 45,53

48, 49]. Many key problems in cooperative control theory and applications have been54

well handled by using MRAC-based control methods [5, 6, 21, 47, 50]. Research on55

distributed MRAC for open-loop reference models has been done in [25]. Moreover,56

[30] studied the adaptive leader-follower consensus problem for MASs with general57

linear dynamics and switching topologies. In [5], the authors considered that the58

leader’s external input is not shared with any follower agent and proposed a new59

external input estimator in a hierarchical and cooperative manner. All these results60

are developed under the distributed MRAC framework.61

However, how to develop a fully distributed output feedback MRAC is still an62

open research case. Actually, after reviewing the distributed MRAC literature, we63

find that the existing distributed MRAC results mainly used state feedback to solve64

the state consensus problems under the well-known matching condition. The latter65

condition requires the dynamics of the followers and the leader to meet some structural66

matching equations from which the ideal parameters of the nominal control laws can67

be calculated. The matching condition with respect to most of the real control sys-68

tems is quite restrictive, and largely constrains the application range of such methods.69

Thus, one key technical problem that must be concerned is how to relax the restrictive70

matching conditions, especially for the distributed MRAC. Moreover, to our knowl-71

edge, a fully distributed output feedback MRAC has never been reported yet, which72

faces several key technical problems to be concerned. Such problems are (i) how to73

estimate the unknown parameters of all followers by only using their own input and74

output? (ii) how to design a distributed MRAC law for each follower by only using75

the local input and output information? (iii) how do all leader-follower tracking errors76

converge to zero without persistent excitation? These technical problems have not77

been addressed in the literature yet. Hence, this paper systematically addresses the78

distributed output feedback MRAC problem and solves the above technical problems.79

Specifically, we develop a fully distributed output feedback MRAC scheme without80

requiring the restrictive matching condition. Particularly, the asymptotic convergence81

of the leader-follower consensus is achieved.82

Overall, this work’s main contributions and novelties are as follows.83

(i) A linearly parameterized output feedback adaptive control framework is estab-84

lished to address the distributed leader-follower output consensus problem for85

linear MASs in general input-output forms. Each agent’s dynamics have different86

pole/zero polynomials and different orders, with all coefficients being unknown.87
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(ii) A fully distributed output feedback adaptive control law is developed for the88

considered MASs, where the adaptive control law of each follower solely relies89

on the local input and output information without requiring the state observer90

and the restrictive structural matching condition on the followers and leader91

dynamics commonly used in the literature.92

(iii) To establish the distributed output matching equation for each follower, some93

auxiliary systems are introduced to generate filtered signals of individual signals94

and neighbors’ outputs. Such filtered signals are crucial to constructing the95

distributed matching equations from which the adaptive parameters used in the96

adaptive control laws can always be derived.97

(iv) The closed-loop stability and asymptotic output consensus analysis are con-98

ducted by using a gradient-based framework independent of Lyapunov functions.99

Particularly, the leader-follower output tracking error and its derivatives up to100

the n∗-th order converge to zero asymptotically without persistent excitation,101

which has not yet been reported in the literature.102

The remainder of this paper is organized as follows. Section 1 introduces the no-103

tation employed, and Section 2 provides the problem statement and the preliminaries.104

Section 3 introduces the distributed output feedback MRC design and the correspond-105

ing theoretical results for providing the basic idea. Section 4 is the main part of this106

paper presenting the adaptive control details where the coefficients are unknown, and107

Section 5 presents two simulation examples to illustrate our algorithm’s performance.108

Finally, Section 6 concludes this paper.109

Notation: In this paper, R denotes the sets of real numbers. Let s denote the110

differential operator, i.e. s[x](t) = ẋ(t) with x(t) ∈ Rn, t ≥ t0. With L∞, L2 and111

L1, we denote three signal spaces defined as L∞ = {x(t) : ‖x(·)‖∞ < ∞}, L2 =112

{x(t) : ‖x(·)‖2 <∞} and L1 = {x(t) : ‖x(·)‖1 <∞} with ‖x(·)‖∞ = supt≥t0 ‖x(t)‖∞,113

‖x(·)‖2 =
(∫∞

t0
‖x(t)‖22dt

)1/2

and ‖x(·)‖1 =
∫∞
t0
‖x(t)‖1dt, respectively.114

2. Problem statement. This section formulates the system model, the control115

objective, the design conditions, and the technical issues to be solved.116

2.1. System model. The MAS considered in this paper is described by the117

following input-output form:118

(2.1) Pi(s)[yi](t) = kpiZi(s)[ui](t), t ≥ 0, i = 1, . . . , N,119

where N is the number of the agents, yi(t) ∈ R and ui(t) ∈ R are the output120

and input of the i-th follower, respectively, kpi is a constant referred to as the high121

frequency gain, and Pi(s) and Zi(s) are the pole and zero polynomials with unknown122

coefficients, degree ni and mi, respectively, i.e.,123

Pi(s) = sni + pi,ni−1s
ni−1 + · · ·+ pi1s+ pi0,

Zi(s) = smi + zi,mi−1s
mi−1 + · · ·+ zi1s+ zi0.

124

It should be noted that ni and nj , as well as mi and mj , can be different for i 6= j,125

with i, j = 1, . . . , N .126

The leader y0(t)’s dynamic model is127

(2.2) Pm(s)[y0](t) = r(t),128

where Pm(s) is a stable polynomial of degree n∗, and r(t) is a bounded and piecewise129

continuous reference input signal for the leader.130
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Actually, (2.2) can be chosen more general as: Pm(s)[y0](t) = Zm(s)[r](t), with131

Zm(s) and Pm(s) being two given zero and pole polynomials. But, the design and132

analysis for more general cases are similar to that for the case of (2.2). Therefore,133

for simplicity of presentation, here we choose (2.2) to conduct the distributed MRAC134

design and analysis. The reader can refer to [37] and [10] for further details.135

Next, it is important to clarify the necessity of using the input-output form (2.1)136

to establish a distributed MRAC framework. Some black-box systems may not afford137

to build a state-space system model when no information about the internal state138

variables is available. However, establishing a simple input-output model without139

containing internal state variables is possible for such black-box systems. In this140

case, the input-output information is adequate for the MRAC and distributed MRAC141

control design and stability analysis. However, a potentially arising question is that as142

long as an input-output model is established, one may derive its state-space realization143

and still use state-space-based methods to conduct the control design and analysis.144

Indeed, the state-space model can be derived from the input-output model. However,145

from a practical viewpoint, the state-space model may sometimes be unsuitable for146

designing the controller because the state variables generally do not have explicit147

physical meanings. Therefore, addressing the cooperative control problems by using148

the input-output models (2.1)-(2.2) is significant.149

Communication graph. Let the MAS be described by (2.1)-(2.2). The com-150

munications between these N + 1 agents are modeled as a directed graph G = {V, E},151

where V = {v0, . . . , vN} is the set of nodes with v0 representing the leader, vi, i =152

1, . . . , N , representing the i-th follower, and E ⊆ V × V being the set of edges of G.153

The directed edge (vj , vi) represents a unidirectional communication channel from154

agent vj to agent vi, i.e., agent vi can obtain the output information from agent155

vj , but not vice versa. The neighborhood of agent vi, i = 0, . . . , N , is denoted by156

Ni = {vj ∈ V : (vj , vi) ∈ E}. A directed sequence of the edges (vi1, vi2) , (vi2, vi3) , . . . ,157

(vi,k−1, vik) is called a path from node vi1 to node vik. A directed tree is a directed158

graph where each node except for the root node has a single neighbor, and the root159

node is a source node. A spanning tree of G is a directed tree whose node set is V. Its160

edge set is a subset of E . Moreover, (vi, vi) is called a self-loop. This study assumes161

a simple graph, i.e., the graph has no self-loops or multiple arcs.162

2.2. Control objective and design conditions.163

164

Control objective. For the MAS (2.1)-(2.2), the control objective is to design a165

distributed output feedback MRAC law solely using local input and output informa-166

tion so that the closed-loop system is stable and of the higher-order output consensus167

properties:168

lim
t→∞

(yi(t)−y0(t))
(j)

=0, i = 1, . . . , N, j = 0, . . . ,n∗,(2.3)169

where y(j)(t) denotes the j-th derivative of y(t).170

Assumptions. To meet the control objective given by (2.3), we present the171

following assumptions:172

(A1) All Zi(s), i = 1, . . . , N , are stable polynomials.173

(A2) The relative degree of i-th follower is ni −mi = n∗ for i = 1, . . . , N .174

(A3) An upper bound on ni, denoted as n̄, is known.175

(A4) The leader input r(t) satisfies ṙ(t) ∈ L∞.176

(A5) The directed graph G has at least one spanning tree with v0 being the parent.177
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It is well known that the usual MRAC systems require the zeros of the con-178

trol system to be stable, which is a consequence of zero-pole cancellations occurring179

in the MRAC systems. In this case, the MRAC law will cancel and replace the180

control system’s zeros with the reference model’s. For stability, such cancellations181

must be stable. In other words, the control system must be minimum-phase. More-182

over, the control system’s relative degree must equal the reference system’s degree to183

guarantee model matching, which is necessary for tracking target even if when the184

system parameters are known [37]. For a distributed MRAC design, Assumptions185

(A1) and (A2) are regarded as extensions of the minimum-phase condition and the186

model-matching condition in the usual MRAC systems. Moreover, Assumption (A3)187

is required for constructing a parameterized system model for parameter adaptation.188

Besides, Assumptions (A1)-(A3) are the traditional design conditions in the usual189

MRAC systems, and Assumption (A4) is a relaxed design condition on the reference190

system, which is used to ensure higher-order output consensus. Finally, Assumption191

(A5) is a typical design condition for the output consensus control that is commonly192

used in the literature.193

2.3. Comparisons and technical issues to be solved.194

195

Comparison to cooperative output regulation. The linear cooperative output reg-196

ulation problem was first formally formulated and solved using a distributed observer197

approach on a static network in [32] and then on a jointly connected switched network198

in [33]. In order to address the design condition where each follower possesses knowl-199

edge of the leader’s system matrix, the literature [2] investigates the linear cooperative200

output regulation problem on static networks using an adaptive distributed observer201

approach. The output regulation based cooperative control has been systematically202

studied in the control community. Generally speaking, the standard output regulation203

based cooperative control method typically relies on the existence of a solution for204

the regulator equations, which fundamentally distinguishes it from the well-known205

MRAC technique. This is the reason why the establishment of a fully distributed206

output feedback MRAC framework for cooperative control remains an imperative,207

necessitating our attention and focus.208

Comparison to distributed MRAC. As mentioned in the Introduction, distributed209

MRAC methods are now applied to multi-agent linear time-invariant systems. How-210

ever, the existing literatures [5, 21, 30, 47, 50] mainly focus on the MASs described211

by the state feedback for state tracking. The followers’ models are of the basic form:212

ẋi = Aixi + Biui, i = 1, ..., N, where xi ∈ Rni and ui ∈ Rmi , i = 1, ..., N, are the213

state vectors and input vectors of the followers, Ai and Bi, i = 1, ..., N, are unknown214

constant matrices of appropriate dimensions. The leader model is of the basic form:215

ẋ0 = A0x0 + B0u0, where x0 ∈ Rn is the state vector, u0 ∈ Rm is the bounded216

reference input, and A0 and B0 are constant matrices, with A0 being stable.217

The control objective is to find a distributed MRAC law that ensures closed-loop218

stability and asymptotic state consensus limt→∞(xi−x0) = 0. To achieve the control219

objective, an essential condition, known as the structural matching condition, is as220

follows. (i) For each follower vi, there exists a constant matrix K∗1ij and a nonsingular221

constant matrix K∗4i of appropriate dimensions such that222

(2.4) Aei = Ai +BiK
∗T
1ij , Bei = BiK

∗
4i,223

where Aei is a stable and known matrix, and Bei is a known matrix for i = 1, ..., N.224

(ii) For each pair of (vi, vj) ∈ E , there exists a constant matrix K∗2ij and K∗3ij of225
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appropriate dimensions such that for i = 1, ..., N,226

(2.5) Aj = Ai +BiK
∗T
3ij , Bj = BiK

∗
2ij .227

The readers can refer to [30] for further details on the matching condition (2.4)-228

(2.5). Note that state consensus is a strong control objective. When state consensus is229

achieved, the followers can track the arbitrary behaviors of the leader, which requires230

structural similarities among all agents. Such structural similarities are modeled as the231

matching condition (2.4)-(2.5). However, the latter condition is restrictive for many232

applications, and largely restricts the application range of the consensus methods.233

Technical issues to be solved. Considering that it is sufficient to achieve output234

consensus for most applications, this paper focuses on addressing how to develop a235

fully distributed output feedback MRAC scheme to ensure asymptotic output con-236

sensus for the MAS (2.1)-(2.2) without requiring the restrictive matching conditions237

just like (2.4)-(2.5). The basic idea of MRAC is to design an adaptive control law238

that ensures the closed-loop system matches any given reference system. Inspired by239

this, for the distributed output feedback MRAC, the agents that are connected to the240

leader follow the reference system (i.e., the leader model). However, the agents that241

are not connected to the leader do not have an available reference system. Thus, the242

first technical problem is designing virtual reference systems for the agents, especially243

for those not connected to the leader. Then, a potentially arising question is how to244

guarantee that the agents with virtual reference systems can achieve leader-follower245

output consensus. Moreover, the third technical problem is accomplishing the higher-246

order tracking properties (2.3). In a word, to establish a fully distributed output247

feedback MRAC framework, the following technical problems must be solved:248

(i) How to design the virtual reference models for all followers and construct the249

plant-model matching equations, especially those that are not connected to the250

leader, by solely using the local input and output information?251

(ii) Given that the agents could follow the virtual reference systems asymptotically,252

how to eventually realize leader-follower output consensus for the whole MAS253

(2.1)-(2.2)? Especially, asymptotic output consensus is required, which leads to254

more difficulties for adaptive control design and analysis.255

(iii) The current results of the distributed leader-follower control indicate that the256

asymptotic state/output consensus property can be ensured. However, under257

the usual design conditions, how to ensure some higher-order output consensus258

as shown in (2.3)? To our knowledge, this problem has never been addressed in259

the literature.260

3. Distributed output feedback MRC design. This section provides the261

basic idea of the distributed output feedback MRAC framework through a distributed262

model reference control (MRC) design, assuming all system parameters are known.263

The design contains four steps: (i) deriving the distributed MRC law structure, (ii)264

constructing virtual reference inputs, (iii) calculating the control law parameters, and265

(iv) conducting system performance analysis.266

Step 1: Distributed MRC law structure. Given that all system parameters267

are known, we design the distributed MRC law for the i-th agent, i = 1, . . . , N , as268

(3.1) ui(t) = θ∗T1i ω1i(t) + θ∗T2i ω2i(t) + θ∗3iω3i(t) + θ∗20iyi(t),269
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where θ∗1i ∈ Rn̄−1, θ∗2i ∈ Rn̄−1, θ∗3i ∈ R and θ∗20i ∈ R are constant parameters to be270

specified, and271

(3.2) ω1i(t) =
a(s)

Λci(s)
[ui](t) ∈ Rn̄−1, ω2i(t) =

a(s)

Λci(s)
[yi](t) ∈ Rn̄−1,272

with a(s) =
[
1, s, . . . , sn̄−2

]T ∈ Rn̄−1 and Λci(s) = sn̄−1 +λci,n̄−2s
n̄−2 + · · ·+λci1s+λci0273

representing an arbitrary monic Hurwitz polynomial. The signals ω1i(t) and ω2i(t)274

are obtained through filtering ui(t) and yi(t) by the stable filter a(s)
Λci(s)

, respectively.275

Remark 3.1. Since Λci(s) in (3.2) is monic and of degree n̄− 1 and the maximum276

degree of the vector a(s) is n̄− 2, each element of the vector a(s)
Λci(s)

is strictly proper,277

i.e., the degree of the numerator a(s) is strictly less than that of the denominator278

Λci(s). Thus, there does not exist any algebraic loop in the control law (3.1).279

In traditional MRAC, ω3i(t) corresponds to the reference system input. Since280

each agent receives signals from its neighbors, and the number of neighbors Ni is281

known, we design ω3i(t) as:282

(3.3) ω3i(t) =


1

Ni

∑
vj∈Ni

rj(t), v0 /∈ Ni,

r(t), v0 ∈ Ni,
283

where rj(t), j = 1, ..., Ni, are auxiliary signals to be designed.284

From (3.3), for agents connected to the leader, the leader’s input r(t) is directly285

used as ω3i(t), enabling them to follow the leader as in traditional MRAC. For agents286

not connected to the leader, r(t) is unavailable. To solve this, we design the auxiliary287

signal 1
Ni

∑
vj∈Ni

rj(t) as ω3i(t), which acts as a virtual reference. Designing this288

virtual reference and ensuring all agents can follow the leader are key challenges289

addressed in this paper. Next, we explain how to obtain rj(t) to construct ω3i(t).290

Step 2: Virtual reference input construction. As mentioned in Appendix291

A, traditional model reference control requires an additional reference signal r(t) =292

Pm(s)[ym](t), which is the sum of some derivative information of the tracked signal.293

Inspired by this, if the derivativesy
(k)
j (t), k=1,..., n∗ with respect to the j-th agent are294

known, we design rj(t) as295

(3.4) rj(t) = Ψ(s)[yj ](t)296

with Ψ(s) = sn
∗

+ ψn∗−1s
n∗−1 + · · · + ψ1s + ψ0 being some chosen monic Hurwitz297

polynomials of degree n∗. However, y
(k)
j (t) is generally difficult to be obtained. Hence,298

using (3.4) to obtain rj(t) is inappropriate. Thus, we present a construction method299

to obtain rj(t) using only uj and yj . For simplicity, we change the subscript from j300

to i, and define two vectors:301

θ∗pi = [kpizi0, kpizi1, . . . , kpizi,mi−1, kpi,−pi0,−pi1,302

. . . ,−pi,ni−2,−pi,ni−1]
T ∈ Rni+mi+1,(3.5)303

φi(t) =

[
1

Λei(s)
[ui](t),

s

Λei(s)
[ui](t), . . . ,

smi−1

Λei(s)
[ui](t),304

smi

Λei(s)
[ui](t),

1

Λei(s)
[yi](t),

s

Λei(s)
[yi](t),305

. . . ,
sni−2

Λei(s)
[yi](t),

sni−1

Λei(s)
[yi](t)

]T
∈ Rni+mi−1,(3.6)306

This manuscript is for review purposes only.



8 J. GUO, Y. ZHANG AND J. F. ZHANG

where Λei(s) = sni + λei,ni−1s
ni−1 + · · ·+ λei1s+ λei0 representing an arbitrary monic307

Hurwitz polynomial. Then, ignoring the exponentially decaying signal, the system308

(2.1) can be expressed as309

(3.7) yi(t)−
Λi,ni−1(s)

Λei(s)
[yi](t) = θ∗Tpi φi(t)310

with Λi,ni−1(s) = λei,ni−1s
ni−1 + · · · + λei1s + λei0. To design rj(t), we first give the311

following lemma demonstrating a key property of y
(j)
i (t), i = 1, . . . , N, j = 1, . . . , n∗.312

Lemma 3.2. For y
(j)
i (t), j = 1, . . . , n∗, it can be expressed by y

(k)
i (t), k=0, . . . , j−313

1, sk

Λei(s)
[ui](t), k = 1 +mi, . . . , j +mi, θ

∗
pi, φi(t), and yi(t).314

Proof. The proof is given in Appendix B. �315

Based on Lemma 3.2, we recursively obtain that y
(j)
i (t), j = 1, . . . , n∗, can be316

expressed by sk

Λei(s)
[ui](t) for k = 1 + mi, . . . , j + mi, θ

∗
pi, φi(t), and yi(t). Thus, we317

express y
(j)
i (t), j = 1, 2, . . . , n∗, as318

yi
(j) = Hij

(
yi,

s1+mi

Λei(s)
[ui], . . . ,

sj+mi

Λei(s)
[ui], θ

∗
pi, φi

)
.(3.8)319

As demonstrated in the proof of Lemma 3.2, Hij is obtained by applying a filter320

related to Λei(s) to the original input-output system. Its form depends solely on321

Λei(s). If Λei(s) is predetermined, then Hij is a known mapping. Consequently,322

Hij , i = 1, . . . , N, j = 1, . . . , n∗, are known and smooth mappings with respect to its323

variables. It should be noted that from (3.4), we derive an analytical expression for324

ri(t) as325

(3.9) ri =

n∗∑
j=0

ψjHij

(
yi,

s1+mi

Λei(s)
[ui], . . . ,

sj+mi

Λei(s)
[ui], θ

∗
pi, φi

)
,326

where ψk, k = 1, ..., n∗, are constant parameters with ψn∗ = 1 such that sn
∗

+327

ψn∗−1s
n∗−1 + · · ·+ ψ1s+ ψ0 is a Hurwitz polynomial.328

Remark 3.3. From (3.9), we see that ri(t) depends on the unknown vector θ∗pi .329

For the adaptive control case, we construct an estimate of ri(t) that will no longer330

depend on any unknown information (see Section 4). Besides, to estimate the higher-331

order derivatives of yi(t), one may employ a standard high-gain differential observer332

[12]. Even though the high-gain observer design is simple and easy to implement,333

using this observer is difficult to realize asymptotic output consensus, and involves334

the high-gain issue. We propose a linear parametrization-based estimation method335

based on this consideration to derive the ri(t)’s estimate and achieve the asymptotic336

output consensus. Finally, it is worth noting that by (3.1), (3.3) and (3.9), it is known337

that each agent’s controller makes use of only its own and its neighbors’ information338

and does not need the global information of the leader.339

From (3.1), it is evident that the nominal control law for each follower solely340

relies on local input and output information, and does not depend on global leader341

information.342

Step 3: Calculation of θ∗1i, θ
∗
2i, θ

∗
3i, and θ∗20i. Now, we construct some plant-343

model output matching equations from which θ∗1i, θ
∗
2i, θ

∗
3i, and θ∗20i can be calculated.344
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Motivated by the usual output feedback MRC in [37], we derive the distributed345

version of the plant-model output matching equations as follows:346

Lemma 3.4. For the i-th agent connected to the leader, there exist constants347

θ∗1i, θ
∗
2i, θ

∗
20i, θ

∗
3i such that348

(3.10)
θ∗T1i a(s)Pi(s) +

(
θ∗T2i a(s) + θ∗20iΛci(s)

)
kpiZi(s)

=Λci(s) (Pi(s)− kpiθ∗3iZi(s)Pm(s)) ;
349

and for the i-th agent not connected to the leader, there exist constants θ∗1i, θ
∗
2i, θ

∗
20i, θ

∗
3i350

such that351

(3.11)
θ∗T1i a(s)Pi(s) +

(
θ∗T2i a(s) + θ∗20iΛci(s)

)
kpiZi(s)

=Λci(s) (Pi(s)− kpiθ∗3iZi(s)Ψ(s))
352

where a(s) and Ψ(s) are defined below (3.2) and (3.4), respectively.353

Proof. The proof is similar to that of Lemma A.2 in Appendix A, and thus,354

omitted here. For details, one may refer to [37]. �355

Remark 3.5. These matching equations always have non-trivial analytical solu-356

tions, and one can choose the solution {θ∗1i, θ∗2i, θ∗20i, θ
∗
3i} to (3.10)-(3.11) from357

θ∗T1i a(s) = Λci(s)−Q(s)Zi(s), θ
∗T
2i a(s) + θ∗20iΛci(s) = −θ∗3iRi(s),(3.12)358

and θ∗3i = 1
kpi

, where Q(s) is the quotient of Λci(s)Pm(s)
Pi(s)

and Ri(s) = Λci(s)Pm(s) −359

Q(s)Pi(s) for (3.10), and Q(s) is the quotient of Λci(s)Ψ(s)
Pi(s)

and Ri(s) = Λci(s)Ψ(s)−360

Q(s)Pi(s) for (3.11).361

The parameters θ∗1i, θ
∗
2i, θ

∗
20i, θ

∗
3i in Lemma 3.4 can be called distributed matching362

parameters, as with these parameters, the distributed MRC law (3.1) matches all363

followers to the leader, as shown subsequently.364

Step 4: System performance analysis. To proceed, we first define the local365

output tracking error as366

(3.13) ei(t) = yi(t)−
1

Ni

∑
vj∈Ni

yj(t), i = 1, . . . , N,367

where Ni is the number of the neighbors of agent vi. Such a local output tracking error368

measures the disagreement between the follower i and the average of its neighbors on369

the output because it is essential to characterize the consensus level of the follower370

and the leader. The motivation of defining such a local state tracking error is shown371

as follows:372

Lemma 3.6. Under Assumption (A5), if ei(t) is bounded, then yi(t) is bounded373

for all i = 1, . . . , N . Further if for any j = 1, . . . , n∗, limt→∞ e
(j)
i (t) = 0 holds374

(or exponentially) for all i = 1, ..., N , then limt→∞ (yi(t)− y0(t))
(j)

= 0 holds (or375

exponentially) for all i = 1, . . . , N .376

Proof. Performing a proof similar to that for Lemma 4.1 in [29], one can verify377

this lemma. �378

From Lemma 3.6, global higher-order leader-follower consensus properties can379

be achieved as long as the higher-order derivatives of all local tracking errors (3.13)380

converge to zero as time tends to infinity. According to this lemma, the following381

theorem clarifies the closed-loop stability and output consensus performance.382
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Theorem 3.7. Under Assumptions (A1), (A2) and (A5), the distributed MRC383

law (3.1) configured with θ∗1i, θ
∗
2i, θ

∗
20i, θ

∗
3i in Lemma 3.4 ensures that all closed-loop384

signals are bounded and the tracking errors yi(t)− y0(t), i = 1,...,N, and their deriv-385

atives up to the n∗-th order converge to zero exponentially as t→∞.386

Proof. For all agents vi ∈ {vi : v0 ∈ Ni}, the leader v0 can be regarded as the387

reference output. Thus, based on Theorem A.3 in Appendix A , one can verify that388

the input ui(t) = θ∗T1i ω1i(t)+ θ∗T2i ω2i(t) + θ∗20iyi(t) + θ∗3ir(t) ensures that the signals389

of the agent vi are bounded, and yi(t)− y0(t), i = 1,...,N, and their derivatives up to390

the n∗-th order converge to zero exponentially.391

For the agent vi /∈ {vi : v0 ∈ Ni}, by Lemma 3.4, we first prove that ei(t)392

converges to zero exponentially. Operating both sides of (3.11) on yi(t), we have393

θT1ia(s)Pi(s)[yi](t) +
(
θT2ia(s) + θ20iΛci(s)

)
kpi394

Zi(s)[yi](t)=Λci(s)(Pi(s)−kpiθ3iZi(s)Ψ(s))[yi](t).(3.14)395

Moreover, with some manipulations on (3.1), we have396

Λci(s)[ui](t) = θT1ia(s)[ui](t) + θT2ia(s)[yi](t) + θ3iΛci(s)Ψ(s)[
1

Ni

∑
vj∈Ni

yj ](t)397

+Λci(s)θ20i[yi](t) + Λci(s) [εΛci
] (t),(3.15)398

where εΛci(t) is an exponentially decaying signal associated with the initial conditions.399

Then, we have400

kpiZi(s)Λci(s) [ui] (t) = Pi(s)Λci(s) [yi] (t)401

= kpiZi(s)Λci(s)θ20i [yi] (t) + kpiZi(s)Λci(s) [εΛci
] (t)402

+kpiZi(s)θ3iΛci(s)Ψi(s)[
1

Ni

∑
vj∈Ni

yj ](t)403

+kpiZi(s)
(
θT1ia(s) [ui] (t) + θT2ia(s) [yi] (t)

)
.(3.16)404

Combining (3.16) and (3.14), together with Pi(s)[yi](t) = kpiZi(s)[ui](t), indicates405

that406

Λci(s)Ψ(s)Zi(s)[yi −
1

Ni

∑
vj∈Ni

yj ](t) = −kpiZi(s)Λci(s) [εΛci
] (t).(3.17)407

Since Λci(s),Ψ(s) and Zi(s) are all stable polynomials and the degree of Ψ(s) is n∗,408

we conclude that for l = 0, 1, . . . , n∗,409

(yi(t)−
1

Ni

∑
vj∈Ni

yj(t))
(l) → 0, exponentially.(3.18)410

According to Lemma 3.6, (3.18) suggests that the higher order exponential leader-411

follower consensus (2.3) is achieved. This also implies that yi(t) ∈ L∞ due to the412

boundedness of y0(t).413

Now, we prove ui(t), i = 1, . . . , N , are also bounded. Using (2.1) and (3.17),
we have kpiZi(s)

2Λci(s)Ψ(s)[ui(t)] = Pi(s)Λci(s)Zi(s)[
1
ni

∑
vj∈Ni

rj ](t) + ε1i(t) with

ε1i(t) = −kpiZi(s)Λci(s) [εΛci
] (t). Since Λci(s), Ψ(s) and Zi(s) are all stable, we can

derive

ui(t) =
Pi(s)

kpiZi(s)Ψi(s)

 1

Ni

∑
vj∈Ni

rj

 (t) + ε2i(t),
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where ε2i(t) is an exponentially decaying signal associated with initial conditions.414

Note that Pi(s)
kpiZi(s)Ψ(s) is stable and proper, i.e. the degree of the numerator Pi(s) is415

not greater than that of the denominator kpiZi(s)Ψ(s). Thus, if
∑
vi∈Ni

rj ∈ L∞,416

then ui(t) ∈ L∞.417

Let li denote the length of the longest directed path for the leader v0 to the418

node vi. Suppose that there exists a follower vk such that rk is unbounded. Then,419

there exists a neighbor vkj of vk such that rkj is unbounded and lkj < lk. From420

Assumption (A5), and by repeating this analysis for up to lk steps, we conclude421

that the reference signal of the leader r(t) is unbounded, which is a contradiction.422

Therefore, ri(t) ∈ L∞, i = 1, . . . , N , and so are the control ui(t). This completes the423

proof. �424

Remark 3.8. Equation (3.17) shows that the convergence rate is influenced by the425

roots of a certain polynomial, with larger roots leading to faster convergence speed.426

However, large roots can cause initial output fluctuations. Therefore, the choice of Λei427

and Λci should consider both the convergence speed and the transient performance of428

the system.429

So far, we have provided a basic distributed MRC framework for the MAS430

(2.1)-(2.2) which is fundamental for the distributed MRAC design addressed next.431

4. Distributed output feedback MRAC design. This section develops a432

distributed output feedback indirect MRAC scheme for the MAS (2.1)-(2.2), where433

the parameters pij , zij , and kpi are unknown. Specifically, we construct the distributed434

output feedback MRAC law, with the distributed indirect MRAC design procedure435

comprising five steps: (i) distributed MARC law construction, (ii) plant parameter436

estimation, (iii) controller parameter calculation, (iv) virtual reference input signal437

estimation, and (v) stability performance analysis.438

Step 1: Distributed MARC law structure. The distributed MRAC law is439

designed as440

ui(t) = θT1i(t)ω1i(t) + θT2i(t)ω2i(t) + θ3i(t)ω̂3i(t) + θ20i(t)yi(t),(4.1)441

where θ1i(t) and θ2i(t) are estimates of θ∗1i and θ∗2i in Lemma 3.4, respectively, θ3i(t)442

is an estimate of 1
kpi

, ω1i(t) and ω2i(t) are defined in (3.2), and ω̂3i(t) is an estimate443

of ω3i(t) in (3.3).444

Step 2: Plant parameter estimation. Consider the i-th follower in (2.1).445

The signal φi(t) in (3.6) can be obtained through filtering ui(t) and yi(t) by the446

stable filter ai(s)
Λei(s)

with ai(s) =
[
1, s, . . . , sni−2

]T
and Λei(s) below (3.6). Similarly,447

Λi,ni−1(s)

Λei(s)
[yi](t) in (3.7) can be obtained through filtering yi(t) by the stable filter448

Λi,ni−1(s)

Λei(s)
.449

Let θpi(t) be an estimate of θ∗pi and define the estimation error as450

εi(t)=θTpi(t)φi(t)−yi(t) +
Λi,ni−1(s)

Λei(s)
[yi](t), t ≥ t0.(4.2)451

To update θpi(t), we use the following gradient algorithm:452

(4.3) θ̇pi(t) = −Γiφi(t)εi(t)

m2
i (t)

, θpi (t0) = θ0i, t ≥ t0,453
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where Γi = diag {Γ1i, γmi+1,Γ2i} with Γ1i ∈ Rmi×mi , Γ1i = ΓT1i > 0, γmi+1 > 0 and454

Γ2i ∈ Rni×ni ,Γ2i = ΓT2i > 0, θ0i is an initial estimate of θ∗pi ∈ Rni+mi+1, and455

(4.4) mi(t) =
√

1 + κφTi (t)φi(t), κ > 0.456

From (3.5), we denote θpi(t) as

θpi(t) =
[̂
kpizi0(t),. . ., k̂pizim,i−1(t), k̂pi(t),−p̂i0(t),. . .,−p̂i,ni−1(t)

]T
.

Thus, we construct the estimates of Pi(s) and Zi(s) for the i-th follower as457

P̂i(s, p̂i) = sni + p̂i,ni−1s
ni−1 + · · ·+ p̂i1s+ p̂i0,458

Ẑi(s, ẑi) = smi + ẑi,mi−1s
mi−1 + · · ·+ ẑi1s+ ẑi0,(4.5)459

where ẑi = [ẑi0, . . . , ẑi,mi−1]T with ẑij =
k̂pizij(t)

k̂pi(t)
and p̂i = [p̂i0, . . . , p̂i,ni−1]T are the460

estimates of z∗i = [zi0, . . . , zi,mi−1)]T and p∗i = [pi0, . . . , pi,ni−1]T , respectively. To461

ensure k̂pi(t) 6= 0 during parameter adaptation, the parameter update law (4.3) needs462

to be modified by introducing some robust term, such as parameter projection, dead-463

zone modification, σ-modification, and so on. We omit the details due to the paper464

length constraints.465

For the parameter θpi(t), the following lemma clarifies some properties crucial for466

stability analysis.467

Lemma 4.1. The adaptive algorithm (4.3) guarantees (i) θpi(t), θ̇pi(t),
εi(t)
mi(t)

are468

bounded and (ii) εi(t)
mi(t)

and θ̇pi(t) belong to L2.469

Proof. The proof is similar to Lemma 3.1 in [37], and so, it is omitted here. �470

Note that the regressor vector φi(t) is not required to be persistently exciting, and471

thus, we cannot ensure that the estimation errors εi(t) converge to zero. Nevertheless,472

this paper shows that the proposed distributed MRAC law (4.1) still ensures closed-473

loop stability and the tracking properties shown in (2.3).474

Step 3: Controller parameter calculation. For the i-th agent connected to475

the leader, the controller parameters {θ1i(t), θ2i(t), θ20i(t), θ3i(t)} are obtained from476

θT1ia(s)P̂i(s, p̂i) +
(
θT2ia(s) + θ20iΛci(s)

)
kpiẐi(s, ẑi)477

= Λci(s)
(
P̂i(s, p̂i)− k̂piθ3iẐi(s, ẑi)Pm(s)

)
,(4.6)478

and for the i-th agent not connected to the leader, the controller parameters are479

obtained from480

θT1ia(s)P̂i(s, p̂i) +
(
θT2ia(s) + θ20iΛci(s)

)
kpiẐi(s, ẑi)481

= Λci(s)
(
P̂i(s, p̂i)− k̂piθ3iẐi(s, ẑi)Ψ(s)

)
.(4.7)482

Regarding how to specifically derive θ1i(t), θ2i(t), θ20i(t), θ3i(t), the reader can refer483

to (3.12).484

Step 4: Virtual reference input signal estimation. The signal ω̂3i(t) in485

(4.1) is designed by486

(4.8) ω̂3i(t) =


1

Ni

∑
vj∈Ni

r̂j(t), v0 /∈ Ni,

r(t), v0 ∈ Ni,
487
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where r̂j(t) is an estimate of the signal rj(t). For simplicity, we change the subscript488

of r̂j(t) from j to i, and design r̂i(t) as489

(4.9) r̂i=

n∗∑
j=0

ψjHij

(
yi,

s1+mi

Λei(s)
[ui], . . .,

sj+mi

Λei(s)
[ui], θpi, φi

)
.490

Now, we derive the following lemma to demonstrate a convergent property of the error491

r̂i(t)− ri(t) under some particular conditions.492

Lemma 4.2. For the gradient algorithm (4.3), if mi(t) ∈ L∞, u̇i(t) ∈ L∞and493

ẏi(t) ∈ L∞, then we have ˙̂ri(t) ∈ L∞ and494

(4.10) lim
t→∞

(r̂i(t)− ri(t)) = 0.495

Proof. The proof of this lemma is long. Thus, we present it in Appendix B to496

avoid disrupting the reading flow. �497

Step 5: System performance analysis. Based on the above derivations, we498

provide the main result of this paper, which demonstrates that the closed-loop stability499

and asymptotic higher-order output consensus are achieved by using the distributed500

MRAC law (4.1).501

Theorem 4.3. Under Assumptions (A1)-(A5), the distributed output feedback502

MRAC law (4.1) ensures that all signals in the adaptive control system comprising503

(2.1), (2.2), (4.1) and (4.3) are bounded, and for i = 1, . . . , N ,504

(4.11) lim
t→∞

(yi(t)− y0(t))
(k)

= 0, k = 0, . . . , n∗.505

Proof. First, we prove that the agents connected to the leader can track the506

leader and generate a virtual signal r̂(t) satisfying limt→∞(r̂(t) − r(t)) → 0 and507
˙̂r(t) ∈ L∞. For the i-th agent connected to the leader, the control law becomes508

ui(t) = θT1i(t)ω1i(t) + θT2i(t)ω2i(t) + θ3i(t)r(t) + θ20i(t)yi(t). Hence, from Theorem A.4509

in Appendix A, we have the closed-loop stability and limt→∞(yi(t) − y0(t)) = 0.510

Under Assumption (A4), we have u̇i(t) ∈ L∞ and ẏi(t) ∈ L∞. Following Lemma511

4.2, and combined with the closed loop stability yields limt→∞(r̂i(t)− r(t)) = 0 and512
˙̂ri(t) ∈ L∞.513

Second, we prove that for the i-th agent, if the conditions limt→∞(r̂j(t)−rj(t)) = 0514

and ˙̂rj(t) ∈ L∞ are satisfied for any vj ∈ Ni, then the following properties hold515

(4.12) lim
t→∞

(yi(t)−
1

Ni

∑
vj∈Ni

yj(t))
(k) = 0,516

for any k = 0, . . . , n∗, i = 1, . . . , N and ˙̂ri(t) ∈ L∞. In view of the control (4.1), for517

any vj ∈ Ni, define518

(4.13) ŷj(t) =
1

Ψ(s)
[r̂j ](t).519

Then, ignoring the exponentially decaying signal, it follows from (4.13) that r̂j(t) =520

Ψ(s)[ŷj ](t). Substituting it into (4.8) yields ω̂3i(t) = Ψ(s)[ 1
Ni

∑
vj∈Ni

ŷj ](t). Based on521

Theorem A.4 in Appendix A with ui(t) = θT1i(t)ω1i(t) + θT2i(t)ω2i(t) + θ3i(t)ω̂3i(t) +522
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θ20i(t)yi(t), all signals with respect to the i-th agent system are bounded and523

limt→∞

(
yi(t)− 1

Ni

∑
vj∈Ni

ŷj(t)
)

= 0. Moreover, we further verify that524

(4.14) lim
t→∞

yi(t)− 1

Ni

∑
vj∈Ni

ŷj

(k)

= 0, k = 0, . . . , n∗.525

Proving (4.14) is quite similar to that of Theorem 3.1 in [38], and thus, omitted here.526

Since527

lim
t→∞

(yi(t)−
1

Ni

∑
vj∈Ni

yj(t))
(k)

528

= lim
t→∞

(yi(t)−
1

Ni

∑
vj∈Ni

ŷj(t))
(k) + lim

t→∞
(

1

Ni

∑
vj∈Ni

(
1

Ψ(s)
[r̂j − rj ](t))(k)),(4.15)529

it is sufficient to prove that for any vj ∈ Ni, the following equation holds:530

(4.16) lim
t→∞

(
1

Ψ(s)
[r̂j − rj ] (t))(k) = 0.531

Let εj(t) = r̂j(t)− rj(t) and the k-th order time derivative of 1
Ψ(s) [εj ](t) is sk

Ψ(s) [εj ](t).532

Thus, with sk

Ψ(s) being stable and proper, if limt→∞(r̂j(t) − rj(t)) = 0 for vj ∈ Ni,533

the property (4.16) holds. Moreover, if ˙̂rj(t) ∈ L∞ for vj ∈ Ni, then u̇i(t) ∈ L∞ and534

ẏi(t) ∈ L∞. From Lemma 4.2, it follows ˙̂ri(t) ∈ L∞.535

Third, we prove that limt→∞(r̂i(t) − ri(t)) = 0 and ˙̂ri(t) ∈ L∞ for i = 1, . . . , N .536

We demonstrate that each agent satisfies ˙̂ri(t) ∈ L∞. Let li denote the length of the537

longest directed path for the leader v0 to the node vi. Suppose there exists at least538

one agent vk such that ˙̂rk(t) is unbounded. Then, there exists a neighbor vkj of vk539

such that ˙̂rkj is unbounded and lkj < lk. Repeating this analysis for up to lk steps, it540

concludes that the reference signal of the leader ṙ(t) is unbounded, which contradicts541

Assumption (A5). Therefore, ˙̂ri(t) ∈ L∞, i = 1, . . . , N . Then, we get mi(t) ∈ L∞,542

u̇i(t) ∈ L∞and ẏi(t) ∈ L∞ and Lemma 4.2 indicates limt→∞(r̂i(t) − ri(t)) = 0 and543
˙̂ri(t) ∈ L∞.544

Finally, we demonstrate the tracking convergence and the higher-order properties.545

From the second and third steps, we get limt→∞(yi(t) − 1
Ni

∑
vj∈Ni

yj(t))
(k) = 0,546

for any k = 0, . . . , n∗, i = 1, . . . , N . This together with Lemma 3.6 indicates that547

limt→∞ (yi(t)− y0(t))
(k)

= 0 for all k = 0, . . . , n∗ and i = 1, . . . , N. The proof is548

completed. �549

Remark 4.4. Theorem 4.3 addresses the tracking performance in the presence of550

unknown parameters. If the reference signal r0(t) meets certain additional conditions,551

such as being sufficiently rich of order 2n̄, then the tracking error can further converge552

to zero exponentially. For more details, please refer to reference [10].553

So far, we have established a fully distributed output feedback MRAC scheme,554

where the adaptive control law for each follower only relies on its local input and555

output information, and the asymptotic leader-follower output consensus is achieved.556

Particularly, the proposed adaptive control scheme overcomes the restrictive structural557

matching conditions, e.g., (2.4) and (2.5), commonly used in the existing distributed558

MRAC literature. Moreover, the higher-order leader-follower output consensus is559

achieved without using the persistent excitation condition as shown in Theorem 4.3.560
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5. Simulation examples. This section presents an example to demonstrate the561

design procedure and verify Theorem 3.7, Lemma 4.2 and Theorem 4.3. We study the562

consensus performance of four followers and a virtual leader for the nominal control563

case and adaptive control case, and their associated communication graph is shown564

in Fig.1.565

Fig. 1. Communication graph for nominal control design.

Simulation system. Consider the following MAS containing four followers mod-566

eled as567

(5.1) Pi(s)[yi](t)=kpiZi(s)[ui](t), t ≥ 0, i = 1, 2, 3, 4,568

where P1(s) = (s+1)
(
s− 1

2

)
, Z1(s) = s+ 1

2 , P2(s) =
(
s+ 3

2

) (
s− 1

2

) (
s+ 1

2

)
, Z2(s) =569 (

s+ 1
2

)
(s+ 1), P3(s) = (s− 1)(s+ 2), Z3(s) = s+ 1

3 , P4(s) = (s− 1)
(
s− 1

2

)
(s+ 2),570

Z4(s) =
(
s+ 1

3

) (
s+ 1

4

)
, and kp1 = −1/3, kp2 = 2, kp3 = −3, kp4 = 4. Note that the571

followers’ models considered in this simulation are unstable and heterogeneous. The572

leader model is chosen as573

(5.2) y0(t) = Wm(s) [r0] (t)574

with Wm(s) = 1/Pm(s) = 1
s+1 and y0(t) = 5 sin(2t). Thus, we calculate that r(t) =575

10 cos(2t) + 5 sin(2t).576

Nominal control case. When the parameters are known, we utilize distributed577

MRC law to achieve convergence.578

Distributed MRC law specification. Based on (3.1), the distributed MRC law for579

the MAS (5.1)-(5.2) is designed as580

(5.3) ui(t)=θ∗T1i ω1i(t) + θ∗T2i ω2i(t) + θ∗20iyi(t) + θ∗3iω3i(t),581

where ωji(t), j = 1, 2, 3, can be derived from (3.2) and (3.3) with Λc1(s) = s +
1,Λc2(s) = s2 +1.5s+0.5,Λc3(s) = s+1, Λc4(s) = s2 +1.5s+0.5, and Ψ(s) = s+1.5.
Moreover, by Lemma 3.4 , the matching parameters in (5.3) are calculated as

θ∗11 = 0.5, θ∗21 = 0, θ∗201 = 4.5, θ∗31 = −3, θ∗12 = [−53.5,−53.5]T ,

θ∗22 = [−33.625,−13.75]T , θ∗202 = 26.25, θ∗32 = 0.5,

θ∗13 = 0.6667, θ∗23 = 0.6667, θ∗203 = 0.5, θ∗33 = −0.3333,

θ∗14 = [0.4167, 0.9167]T , θ∗24 = [0.3750,−0.3750]T , θ∗204 = −0.6250, θ∗34 = 0.25.

System responses. The initial outputs of the followers are chosen as [y1(0), y2(0),582

y3(0), y4(0)]T = [3.5, 6, 0, 8.3]T . Fig.2 shows the response of the outputs yi(t), i =583

1, . . . , 4, of the followers and the trajectories of the derivatives of the leader and584

followers’ output. Fig.2 highlights that the desired output higher order consensus585

performance is ensured. The simulation results verify the theoretical results.586
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Fig. 2. Trajectories of the five agents’ outputs and derivatives.

Fig. 3. Trajectories of the parameter adaptation.

Adaptive control case. To verify Lemma 4.2 and Theorem 4.3, consider the587

system (5.1)-(5.2) where the parameters are unknown.588

Distributed MRAC law specification. Based on (4.1), the distributed MRAC law589

for the MAS (5.1)-(5.2) is designed as590

(5.4) ui(t) =θT1i(t)ω1i(t) + θT2i(t)ω2i(t) + θ20i(t)yi(t) + θ3i(t)ω̂3i(t),591

where ωji(t), j = 1, 2, can be derived from (3.2) with Λc1(s) = s + 4,Λc2(s) = s2 +
5s + 6,Λc3(s) = s + 5, Λc4(s) = s2 + 7s + 12, and Ψ(s) = s + 1.5. Moreover, to
obtain the adaptive parameters θ1i(t), θ2i(t), θ20i(t), θ3i(t) in (5.4), first by (4.3), we
obtain the estimates of θ∗pi defined in (3.5) with Γ1 = Γ3 = 10I4×4,Γ2 = Γ4 = 10I6×6,

and Λe1(s) = s2 + 3s + 2,Λe2(s) = s3 + 1.833s2 + s + 0.167,Λe3(s) = s2 + 1.333s +
0.333,Λe4(s) = s3+1.833s2+s+0.167, where φi(t), εi(t) and mi(t) can be derived from
(3.6), (4.2) and (4.4), respectively. Then, θ1i(t), θ2i(t), θ20i(t), θ3i(t) can be calculated
by (4.6) and (4.7). Next, we specify the signal (4.8) as

ω̂31(t) = ω̂32(t) = r(t), ω̂33(t) = 1/2(r̂1(t) + r̂2(t)), ω̂34(t) = 1/2(r̂2(t) + r̂3(t)),
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Fig. 4. Trajectories of the agents’ outputs.
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Fig. 5. Trajectories of the followers’ inputs.

where

r̂j(t) =θTpj(t)s[φj ](t) +
sΛj,n−1(s)

Λej(s)
[yj ](t) + 1.5yj(t), j = 1, 2, 3, 4,

with φj(t) defined in (3.6) and Λj(n−1)(s) defined below (3.7).592

System responses. The initial outputs of the followers are chosen as [y1(0), y2(0)593

, y3(0), y4(0)]T = [−1, 2, 3, 1]T . Fig.3 displays the first element of the adaptive pa-594

rameters {θ1i(t), θ2i(t), θ20i(t), θ3i(t)} in (5.4) and Fig.4 presents the responses of the595

outputs yi(t), i = 1, . . . , 4, of the followers. Fig.4 reveals that the desired output596

consensus performance is ensured. Besides, Fig.5 shows the trajectories of the fol-597

lowers’ inputs, and Fig.6 displays the consistency of the estimated virtual reference598

signal. From Fig.6, Lemma 4.2 is well verified. Fig.7 illustrates the trajectories of the599

first derivative of the leader and followers’ output, highlighting that the higher-order600

properties in Theorem 4.3 are well supported by the numerical example. Overall, the601

simulation results have verified the theoretical results for the adaptive control case.602

Here we provide only numerical examples, while how to apply the proposed method603

in a real application is currently under investigation.604

6. Conclusion. This paper proposes a fully distributed output feedback MRAC605

method for a general class of linear time-invariant systems with unknown parameters.606

The developed architecture overcomes the restrictive matching condition commonly607

used in the existing distributed MRAC methods. Our adaptive control law solely relies608

on local input and output information and ensures global higher-order leader-follower609

output consensus. Several simulation results verify the validity of the proposed adap-610

tive control method. Nevertheless, how to solve the issues when the MAS (1)-(2)611

with uncertain switching topologies by using a distributed output feedback MRAC612

framework should be further studied.613
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Fig. 6. Trajectories of the followers’ virtual signals.
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Fig. 7. Trajectories of the agents’ output derivatives.

Appendix A. Some useful lemmas and theorems. The following lemma614

establishes a crucial link between the square integrability property of a function and615

the asymptotic convergence of an associated error signal. Specifically, it states that616

if a function f(t) has a bounded derivative and the integral
∫∞

0
f2(t)dt is finite, then617

f(t) asymptotically approaches zero as t→∞. This lemma is a specific application of618

a more general result known as Barbălat’s Lemma, which guarantees the convergence619

of certain types of functions under the given conditions [10].620

Lemma A.1. [37] If ḟ(t) ∈ L∞ and f(t) ∈ L2, then limt→∞ f(t) = 0.621

Now we present some well-known results of traditional indirect MRAC of LTI622

systems, which are fundamentals in our distributed output feedback MRAC design.623

Consider a traditional indirect MRAC system. The control system is624

(A.1) P (s)[y](t) = kpZ(s)[u](t),625

where y is the output, u is the input, P (s) is the pole polynomial with unknown626

coefficients, Z(s) is the stable zero polynomial with unknown coefficients, and kp is627

the unknown high-frequency gain. The reference model is628

(A.2) Pm(s) [ym] (t) = r(t).629

The indirect MRAC law is630

(A.3) u(t) = θT1 ω1(t) + θT2 ω2(t) + θ20y(t) + θ3r(t),631

This manuscript is for review purposes only.



DISTRIBUTED OUTPUT FEEDBACK INDIRECT MRAC 19

where θi, i = 1, 2, 20, 3, are designed parameters, ω1(t) = a(s)
Λc(s) [u](t) ∈ Rn−1, ω2(t) =632

a(s)
Λc(s) [y](t) ∈ Rn−1 with a(s) =

[
1, s, . . . , sn−2

]
and Λc(s) being a monic stable poly-633

nomial of degree n− 1.634

Lemma A.2. [37] There exist constant parameters θ∗1 , θ
∗
2 , θ
∗
20, θ

∗
3 such that635

θ∗T1 a(s)P (s) +
(
θ∗T2 a(s) + θ∗20Λc(s)

)
Z(s) = Λc(s) (P (s)− θ∗3Z(s)Pm(s)) .(A.4)636

Theorem A.3. [37] If the parameters θi in (A.3) are replaced by θ∗i , i = 1, 2, 20, 3,637

satisfying (A.4), then the control law (A.3) ensures that all signals in the closed-638

loop system are bounded and y(t) − ym(t) = ε0(t) for some initial condition-related639

exponentially decaying ε0(t).640

For the adaptive case, there are two steps to design θi, i = 1, 2, 20, 3: (i) estimation641

of the system parameters by an adaptive law like (4.3), and (ii) calculation of the642

controller parameters using some linear equations like (31). Under some standard643

assumptions, the indirect MRAC system (A.1)-(A.3) has the following properties. All644

these properties can be seen in [37]:645

Theorem A.4. [37] The adaptive control law (A.3) ensures that all signals are646

bounded and y(t)− ym(t) ∈ L2, limt→∞ (y(t)− ym(t)) = 0.647

Appendix B. Proofs of Lemma 3.2 and Lemma 4.2.648

B.1. Proof of Lemma 3.2. Using Λei(s) defined below (3.6), we can express649

the agent model (1) of the following form650

(B.1) yi(t)−
Λi(ni−1)(s)

Λei(s)
[yi](t) = θ∗Tpi φi(t).651

Then, we have652

s[yi](t) = θ∗Tpi s[φi](t) +
sΛi(ni−1)(s)

Λei(s)
[yi](t)(B.2)653

= θ∗Tpi

[
s

Λei(s)
[ui](t), . . . ,

smi+1

Λei(s)
[ui](t)654

s

Λei(s)
[yi](t), . . . ,

sni

Λei(s)
[yi](t)

]T
+
sΛi(ni−1)(s)

Λei(s)
[yi](t).655

Since the degree of Λei(s) is ni, then s
Λei(s)

[ui](t), . . . ,
smi+1

Λei(s)
[ui](t) and s

Λei(s)
[yi](t),656

. . . , s
ni−1

Λei(s)
[yi](t) can be expressed by φi(t).657

Moreover, we calculate658

sni

Λei(s)
[yi](t) = yi(t) +

sni − Λei(s)

Λei(s)
[yi](t),

sΛi(ni−1)(s)

Λei(s)
[yi](t) = Λei(ni−1)yi(t) +

sΛi(ni−1)(s)− Λei(ni−1)Λei(s)

Λei(s)
[yi](t),

659

where sni−Λei(s)
Λei(s)

, and
sΛi(ni−1)(s)−Λei(s)

Λei(s)
are strictly proper. This indicates that660

Lemma 3.2 holds for j = 1.661
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When 1 < j < n∗, we have662

sj [yi](t) = θ∗Tpi s
j [φi](t) +

sjΛi(ni−1)(s)

Λei(s)
[yi](t)663

= θ∗Tpi

[
sj

Λei(s)
[ui](t), . . . ,

smi+j

Λei(s)
[ui](t)

sj

Λei(s)
[yi](t), . . . ,

sni−1+j

Λei(s)
[yi](t)

]T
664

+
sjΛi(ni−1)(s)

Λei(s)
[yi](t).(B.3)665

Noting that j < n∗, ni = mi + n∗, the signals sj

Λei(s)
[ui](t), . . . ,

smi+j

Λei(s)
[ui](t), and666

sj

Λei(s)
[yi](t), . . . ,

sj+(ni−1−j)

Λei(s)
[yi](t) can be directly obtained. Moreover, through de-667

composition, one can obtain668

sni+q

Λei(s)
=

q∑
k=0

h̄qks
q−k +

ni−1∑
k=1

l̄qk
sk

Λei(s)
, q = 0, . . . , j − 1,669

sjΛi(ni−1)(s)

Λei(s)
=

j−1∑
k=0

h̆ks
j−1−k +

ni−1∑
k=1

l̆k
sk

Λei(s)
.(B.4)670

Thereby, sj [yi](t), j = 1, 2, . . . , n∗− 1 can be expressed by s[yi](t), . . . , s
j−1[yi](t), θ

∗
pi671

in (3.5), sk

Λei(s)
[ui](t), k = 1 +mi, . . . , j +mi, φi(t), and yi(t).672

When j = n∗, only the signal smi+j

Λei(s)
[ui](t) needs to be considered. Concretely,673

smi+j

Λei(s)
[ui](t) = sni

Λei(s)
[ui](t) = ui(t) + sni−Λei(s)

Λei(s)
[ui](t) with sni−Λei(s)

Λei(s)
being strictly674

proper, which indicates the conclusion also holds for j = n∗. Thus, the lemma675

follows. �676

B.2. Proof of Lemma 4.2. We first demonstrate that di1(t) converges to677

s[yi](t) by showing that the error term involving θ̃pi(t) approaches zero as t → ∞.678

Using mathematical induction, we extend this result to dik(t), showing that it con-679

verges to sk[yi](t) for higher orders. Combining these results, we then establish that680

the tracking error r̂i(t) − ri(t) converges to zero. The detailed proof process is as681

follows. With (3.8), we define682

(B.5) dij(t) = Hij

(
yi,

s1+mi

Λei(s)
[ui], . . . ,

sj+mi

Λei(s)
[ui], θpi, φi

)
,683

for i = 1, ..., N and j = 0, ..., n∗. Comparing (3.8) and (B.5), we see that dij(t),684

j = 0, ..., n∗, are the estimates of yi(t), s[yi](t), ..., sn
∗
[yi](t), respectively. Since685

θ̇pi(t) ∈ L∞, ω̇e1i(t) ∈ L∞, ω̇e2i(t) ∈ L∞, u̇i(t) ∈ L∞and ẏi(t) ∈ L∞, it follows that686

˙̂ri(t) ∈ L∞. Next, we will prove a stronger conclusion that687

(B.6) dij(t)− sj [yi](t)→ 0, j = 0, . . . , n∗.688

We now use mathematical induction to prove (B.6). The proving technique refers689

to the proof of the higher-order tracking property of MRAC in [38].690

Let θ̃pi(t) = θpi(t)− θ∗pi. When j = 1, from (B.1), the signal di1 defined in (B.5)691

can be expressed by692

(B.7) di1(t) = θTpi(t)s[φi](t) +
sΛi(ni−1)(s)

Λei(s)
[yi](t).693
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Then, by (B.2) and (B.7), we have di1(t)−s[yi](t) = θ̃Tpi(t)s[φi](t) = θ̃Tpi(t)φ̇i(t). Noting694

(4.2) and (B.1), εi(t) can be expressed by εi(t) = θTpi(t)φi(t)− θ∗Tpi φi(t) = θ̃Tpi(t)φi(t).695

Then, the derivative of εi(t) is ε̇i(t) = θ̇Tpi(t)φ(t) + θ̃Tpi(t)φ̇i(t). Noting (4.3), we have696

θ̇pi(t) ∈ L∞ and thus ε̇i(t) ∈ L∞. Hence, by (4.3), we have θ̈pi(t) ∈ L∞. Since697

θ̇pi(t) ∈ L2 by Lemma 4.1, then Lemma A.1 indicates that limt→∞ θ̇pi(t) = 0. Thus,698

to prove that di1(t) − s[yi](t) = θ̃Tpi(t)φ̇i(t) converges to zero, it is sufficient to prove699

limt→∞ ε̇i(t) = 0. Next, we will prove this property by using the definition of limits,700

i.e., for any given η, there exists a T = T (η) > 0 such that |ε̇i(t)| < η.701

We decompose the signal ε̇i(t) into two fictitious parts: one being small enough702

and one converging to zero asymptotically with time going to infinity. First, two703

fictitious K(s) and H(s) are introduced and defined by704

(B.8) K(s) =
ak

(s+ a)k
, sH(s) = 1−K(s),705

where a > 0 is an adjustable parameter. Thus, given K(s), the filter H(s) is strictly706

proper (with relative degree one) and stable, and is specified as707

(B.9) H(s) =
1

s
(1−K(s)) =

1

s

(s+ a)k − ak

(s+ a)k
.708

Moreover, from [28], it is known that the impulse response function of H(s) is h(t) =709

L−1[H(s)] = e−at
∑k
i=1

ak−i

(k−i)! t
k−i and the L1 signal norm of h(t) is710

(B.10) ‖h(·)‖1 =

∫ ∞
0

|h(t)|dt =
k

a
.711

We choose the filter K(s) and H(s) with k = 2. Using (B.8) that 1 = sH(s) +K(s),712

we divide ε̇i(t) into two terms713

ε̇i(t) = s[θ̃Tpiφi](t) = H(s)s2[θ̃Tpiφi](t) + sK(s)[θ̃Tpiφi](t)714

= H(s)s2[θ̃Tpiφi](t) + sK(s)[εi](t).(B.11)715

By the assumption mi(t) ∈ L∞ and Equations (B.3) and (B.4), we have φi(t), φ̇i(t),716

φ̈i(t) ∈ L∞. By Lemma 4.1,we have θ̇pi(t), θ̃pi(t) ∈ L∞. Therefore, noting θ̈pi(t) ∈717

L∞, it follows718

(B.12) s2[θ̃Tpiφi](t) = [θ̈Tpiφi + 2θ̇Tpiφ̇i + θ̃Tpiφ̈i](t) ∈ L∞.719

Then, from the above L1 signal norm expression of H(s), ‖h(·)‖1 = 2
a , we have720

(B.13)
∣∣∣H(s)s2[θ̃Tpiφi](t)

∣∣∣ ≤ c1
a

721

for any t ≥ 0 and some constant c1 > 0 independent of a > 0. We now con-722

sider sK(s)[εi](t). Since φ̇i(t) ∈ L∞ and mi(t) ∈ L∞, then ε̇i(t) = θ̇Tpi(t)φi(t)+723 (
θpi(t)− θ∗pi

)T
φ̇i(t) ∈ L∞. By Lemma 4.1 and mi(t) ∈ L∞, we have εi(t) ∈ L2.724

Using Lemma A.1, it follows limt→∞ εi(t) = 0. Therefore, since sK(s) is stable and725

strictly proper, then, for any finite a > 0 in K(s),726

(B.14) lim
t→∞

sK(s)[εi](t) = 0.727
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For any η > 0, set a = a(η) ≥ 2c1
η for the filter H(s). Then, it follows that for any728

t > 0,729

(B.15)
∣∣∣H(s)s2[θ̃Tpiφi](t)

∣∣∣ ≤ c1
a
≤ η

2
.730

Moreover, by limt→∞ sK(s)[εi](t) = 0, there exists T = T (a(η), η) > 0, such that for731

any t > T ,732

(B.16) |sK(s)[εi](t)| <
η

2
.733

Therefore, due to (B.15) and (B.16), for any t > T734

|ε̇i(t)| ≤
∣∣∣H(s)s2[θ̃Tpiφi](t)

∣∣∣+ |sK(s)[εi](t)| <
η

2
+
η

2
= η,(B.17)735

which implies limt→∞ ε̇i(t) = 0. So far we have proved that

lim
t→∞

(di1(t)− s[yi](t)) = 0.

Given that for all j = 1, . . . , k − 1, k ≤ n∗, the following properties hold:736

(B.18) lim
t→∞

εi(k−1)(t)=0, lim
t→∞

(
dij(t)− sj [yi](t)

)
=0,737

where εi(k−1)(t) = θ̃Tpi(t)
(
sk−1[φi](t)

)
. We have the following analysis.738

When j = k, by (B.1), we have sk[yi](t) = θ∗Tpi s
k[φi](t)+

skΛi(ni−1)(s)

Λei(s)
[yi](t). Define739

P (t) = sk[φi](t), Q(t) =
skΛi(ni−1)(s)

Λei(s)
[yi](t).(B.19)740

Then,741

(B.20) sk[yi](t) = θ∗Tpi P (t) +Q(t).742

For simplicity of presentation, we denote743

(B.21) dik(t) = θTpi(t)P̂ (t) + Q̂(t),744

where P̂ (t) and Q̂(t) are the estimates of P (t) and Q(t), respectively. Using (B.4),745

Q(t) and Q̂(t) can be expressed by746

Q(t) =

k−1∑
l=0

h̆ls
l[yi](t) +

ni−1∑
l=1

l̆l
sl

Λei(s)
[yi](t),(B.22)747

Q̂(t) =

k−1∑
l=0

h̆ldil(t) +

ni−1∑
l=1

l̆l
sl

Λei(s)
[yi](t).(B.23)748

Then, by (B.22), (B.23) and the properties given in (B.18), we have749

(B.24) lim
t→∞

(Q̂(t)−Q(t)) = lim
t→∞

(
k−1∑
l=1

h̆l
(
dil − sl[yi](t)

))
= 0.750
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Similarly, noting that each element of the vector sk[φi](t) contains sj−1[yi](t), j =751

1, . . . , k and some filtered signals on yi(t) and ui(t), then by (B.4), (B.18) and similar752

analysis for the convergence of Q̂(t) − Q(t) , it follows limt→∞(P̂ (t) − P (t)) = 0.753

Therefore, by (B.20) and (B.21), we have754

lim
t→∞

(dik(t)− sk[yi](t)) = lim
t→∞

θ̃Tpi(t)P (t) + lim
t→∞

θTpi(t)(P̂ (t)− P (t))755

+ lim
t→∞

(Q̂(t)−Q(t)) = lim
t→∞

θ̃Tpi(t)P (t).(B.25)756

We next prove that limt→∞ θ̃Tpi(t)P (t) = limt→∞ θ̃Tpi(t)
(
sk[φi](t)

)
= 0. Consider the757

signal εi(k−1)(t) = θ̃Tpi(t)
(
sk−1[φi](t)

)
. Its derivative is758

(B.26) ε̇i(k−1)(t) = θ̇Tpi(t)s
k−1[φi](t) + θ̃Tpi(t)s

k[φi](t).759

Since mi(t) ∈ L∞ and limt→∞ θ̇pi(t) = 0, it follows limt→∞ θ̇Tpi(t)s
k−1[φi](t) = 0.760

Hence, by (B.26), to prove limt→∞ θ̃Tpi(t)
(
sk[φi](t)

)
= 0, it is sufficient to prove761

limt→∞ ε̇i(k−1)(t) = 0. Similar to (B.11), we express ε̇i(k−1)(t) as762

ε̇i(k−1)(t) = s[θ̃Tpi
(
sk−1[φi]

)
](t)763

= H(s)s2[θ̃Tpi
(
sk−1[φi]

)
](t) + sK(s)[εi(k−1)](t).(B.27)764

By the assumption mi(t) ∈ L∞ and Equations (B.3) and (B.4), we have, for k ≤ n∗,
skφi(t) ∈ L∞. When k = n∗, by the additional assumption u̇i(t), ẏi(t) ∈ L∞, we have
sk+1φi(t) ∈ L∞. Moreover, by Lemma 4.1,we have θ̇pi(t), θ̃pi(t) ∈ L∞. Therefore,

noting θ̈pi(t) ∈ L∞, it follows

s2[θ̃Tpi(t)
(
sk−1[φi]

)
](t) =

[
θ̈Tpis

k−1[φi] + 2θ̇Tpis
k[φi] + θ̃Tpis

k+1[φi]
]

(t) ∈ L∞.

Then, for j = k, similar to (B.13), we have
∣∣∣H(s)s2

[
θ̃Tpis

k−1[φi]
]

(t)
∣∣∣ ≤ ck

a , for some765

ck > 0 independent of a. Since sK(s) is stable and strictly proper, so that, with766

limt→∞ εi(k−1)(t) = 0, we have limt→∞ sK(s)[εi(k−1)](t) = 0. Hence, similar to (B.17),767

by choosing suitable parameter a > 0 in H(s) and K(s), it can be shown that for any768

η > 0, there exists T = T (η, a) > 0, such that for any t > T , it holds |ε̇i(k−1)(t)| < η.769

Therefore, limt→∞ ε̇i(k−1)(t) = 0. Then, by limt→∞
˙̃
θTpi(t)s

k−1[φi](t) = 0 as estab-770

lished above (B.27), and (B.25), we have771

(B.28) lim
t→∞

εik(t) = lim
t→∞

θ̃Tpi(t)
(
sk[φi](t)

)
= 0, lim

t→∞

(
dik(t)− sk[yi](t)

)
= 0.772

Therefore, by (3.8), (3.9), (4.9), and (B.5), it follows

r̂i(t)− ri(t) =

n∗∑
j=0

ψj
(
dij(t)− sj [yi](t)

)
→ 0,

with ψj defined below (3.9). The proof is completed. �773
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