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DISTRIBUTED OUTPUT FEEDBACK INDIRECT MRAC OF
CONTINUOUS-TIME MULTI-AGENT LINEAR SYSTEMS*

JIAN GUOT, YANJUN ZHANG!, AND JI-FENG ZHANG §

Abstract. This paper studies the distributed leader-follower output consensus problem for
continuous-time uncertain multi-agent linear systems in general input-output forms. Specifically,
we extend the well-known output feedback indirect model reference adaptive control (MRAC) and
develop a fully distributed output feedback indirect MRAC scheme to achieve closed-loop stability
and asymptotic leader-follower output consensus. Compared with the existing results, the proposed
distributed MRAC scheme has the following characteristics. First, the orders of each agent’s pole/zero
polynomials, including the followers and the leader, can differ from others, and the parameters in each
follower’s pole/zero polynomials are unknown. Second, the proposed adaptive control law of each
follower solely relies on the local input and output information without requiring the state observer
and the structural matching condition on the followers’ dynamics, commonly used in the literature.
Third, for any given leader with a relative degree n*, the leader-follower output tracking error and its
derivatives up to the n*-th order converge to zero asymptotically, which has never been reported in
the literature. Finally, a simulation example verifies the validity of the proposed distributed MRAC
scheme.

Key word. Model reference adaptive control, distributed output feedback, multi-agent systems,
leader-follower consensus

MSC codes. 93B52, 93C15, 93C40

1. Introduction. Multi-agent systems (MASs) focus on the joint behavior of
autonomous agents. In the past decades, researchers in various fields focused on how
agents cooperate with each other and revealed many interesting phenomena [3, 14].
A fundamental problem in MASs is designing a control law for each agent that solely
relies on neighborhood information, so that the networked system can achieve specific
tasks such as formation, swarming or consensus. Several prestigious papers [4, 11]
have further highlighted the important and fundamental problems the cooperative
control of MASs suffers from.

Many remarkable results have been reported to deal with various multi-agent
distributed control and coordination tasks, e.g., consensus/synchronization [20], for-
mation control [8, 36], bipartite consensus [18, 39], and containment control [7, 19].
Since the agents must agree on their respective tasks in cooperative control, the con-
sensus control of a multi-agent system (MAS) has been a popular research topic.
Currently, there are mainly two consensus control strategies: the behavior-based (or
leaderless) strategy [17, 24] and the leader-follower strategy [9, 43]. The main task of
a consensus control problem is to design appropriate distributed consensus protocols
to achieve consensus. However, designing distributed protocols is challenging due to
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2 J. GUO, Y. ZHANG AND J. F. ZHANG

the interaction between agents [16].

To date, the consensus problem has been extensively studied in the control com-
munity. For instance, in [24, 26], the consensus problems for some simple linear MASs
were investigated. Since then, the literature has addressed the consensus control for
the case with noises [51], for general linear homogeneous MASs [15, 34, 46], some non-
linear MASs, such as Lipschitz nonlinear systems [31], Euler-Lagrange systems [23],
rigid body systems [27], nonlinear MASs with compasses[22] and fractional MASs
[44]. Note that the well-known backstepping technique originally developed in [13] for
nonlinear adaptive control design is still effective and quite popular for cooperative
control design and analysis of MASs [40]. Furthermore, the output regulation tech-
nique is also a powerful tool for cooperative control design and analysis, and many
remarkable results have been published [35, 41].

Adaptive control methods are widely used in various fields [42] in which the model
reference adaptive control (MRAC) technique has attracted significant attention since
it can simultaneously realize online parameter estimation and asymptotic tracking
control for systems with large parametric/structural uncertainties [1, 10, 30, 37, 45,
48, 49]. Many key problems in cooperative control theory and applications have been
well handled by using MRAC-based control methods [5, 6, 21, 47, 50]. Research on
distributed MRAC for open-loop reference models has been done in [25]. Moreover,
[30] studied the adaptive leader-follower consensus problem for MASs with general
linear dynamics and switching topologies. In [5], the authors considered that the
leader’s external input is not shared with any follower agent and proposed a new
external input estimator in a hierarchical and cooperative manner. All these results
are developed under the distributed MRAC framework.

However, how to develop a fully distributed output feedback MRAC is still an
open research case. Actually, after reviewing the distributed MRAC literature, we
find that the existing distributed MRAC results mainly used state feedback to solve
the state consensus problems under the well-known matching condition. The latter
condition requires the dynamics of the followers and the leader to meet some structural
matching equations from which the ideal parameters of the nominal control laws can
be calculated. The matching condition with respect to most of the real control sys-
tems is quite restrictive, and largely constrains the application range of such methods.
Thus, one key technical problem that must be concerned is how to relax the restrictive
matching conditions, especially for the distributed MRAC. Moreover, to our knowl-
edge, a fully distributed output feedback MRAC has never been reported yet, which
faces several key technical problems to be concerned. Such problems are (i) how to
estimate the unknown parameters of all followers by only using their own input and
output? (ii) how to design a distributed MRAC law for each follower by only using
the local input and output information? (iii) how do all leader-follower tracking errors
converge to zero without persistent excitation? These technical problems have not
been addressed in the literature yet. Hence, this paper systematically addresses the
distributed output feedback MRAC problem and solves the above technical problems.
Specifically, we develop a fully distributed output feedback MRAC scheme without
requiring the restrictive matching condition. Particularly, the asymptotic convergence
of the leader-follower consensus is achieved.

Overall, this work’s main contributions and novelties are as follows.

(i) A linearly parameterized output feedback adaptive control framework is estab-
lished to address the distributed leader-follower output consensus problem for
linear MASs in general input-output forms. Each agent’s dynamics have different
pole/zero polynomials and different orders, with all coefficients being unknown.
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DISTRIBUTED OUTPUT FEEDBACK INDIRECT MRAC 3

(ii) A fully distributed output feedback adaptive control law is developed for the
considered MASs, where the adaptive control law of each follower solely relies
on the local input and output information without requiring the state observer
and the restrictive structural matching condition on the followers and leader
dynamics commonly used in the literature.

(iii) To establish the distributed output matching equation for each follower, some
auxiliary systems are introduced to generate filtered signals of individual signals
and neighbors’ outputs. Such filtered signals are crucial to constructing the
distributed matching equations from which the adaptive parameters used in the
adaptive control laws can always be derived.

(iv) The closed-loop stability and asymptotic output consensus analysis are con-
ducted by using a gradient-based framework independent of Lyapunov functions.
Particularly, the leader-follower output tracking error and its derivatives up to
the n*-th order converge to zero asymptotically without persistent excitation,
which has not yet been reported in the literature.

The remainder of this paper is organized as follows. Section 1 introduces the no-
tation employed, and Section 2 provides the problem statement and the preliminaries.
Section 3 introduces the distributed output feedback MRC design and the correspond-
ing theoretical results for providing the basic idea. Section 4 is the main part of this
paper presenting the adaptive control details where the coefficients are unknown, and
Section 5 presents two simulation examples to illustrate our algorithm’s performance.
Finally, Section 6 concludes this paper.

Notation: In this paper, R denotes the sets of real numbers. Let s denote the
differential operator, i.e. s[z|(t) = i(t) with z(t) € R", t > t,. With L>, L? and
L', we denote three signal spaces defined as L™ = {z(t) : ||z(")]|ec < 00}, L? =
{z(t) : [lo()l]2 < oo} and L12= {z(t) : [l()llr < oo} with [[2(-)llec = SUP>4, [[4()]]so,

1

ez = (2 le®l3a) " and [2()ll = 7 (t)1de. respectively

2. Problem statement. This section formulates the system model, the control
objective, the design conditions, and the technical issues to be solved.

2.1. System model. The MAS considered in this paper is described by the
following input-output form:

(2.1) Pu(s)lyil(t) = ki Zi()[ui)(), t >0, i=1,...,N,

where N is the number of the agents, y;(t) € R and wu;(¢f) € R are the output
and input of the i-th follower, respectively, kp; is a constant referred to as the high
frequency gain, and P;(s) and Z;(s) are the pole and zero polynomials with unknown
coefficients, degree n; and m;, respectively, i.e.,

Pi(s) = s™ +pz’,m—13ni71 + -+ pirs + pio,

) 1
Zi(s) = 8™ + Zim,—18™ T+ -+ 215 + Zio-

It should be noted that n; and n;, as well as m; and m;, can be different for ¢ # j,
with 4, =1,..., N.

The leader yo(t)’s dynamic model is
(2:2) P (s)[yol () = (1),

where P,,(s) is a stable polynomial of degree n*, and r(t) is a bounded and piecewise
continuous reference input signal for the leader.
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4 J. GUO, Y. ZHANG AND J. F. ZHANG

Actually, (2.2) can be chosen more general as: Py, (8)[yo](t) = Zm(s)[r](t), with
Zm(s) and P, (s) being two given zero and pole polynomials. But, the design and
analysis for more general cases are similar to that for the case of (2.2). Therefore,
for simplicity of presentation, here we choose (2.2) to conduct the distributed MRAC
design and analysis. The reader can refer to [37] and [10] for further details.

Next, it is important to clarify the necessity of using the input-output form (2.1)
to establish a distributed MRAC framework. Some black-box systems may not afford
to build a state-space system model when no information about the internal state
variables is available. However, establishing a simple input-output model without
containing internal state variables is possible for such black-box systems. In this
case, the input-output information is adequate for the MRAC and distributed MRAC
control design and stability analysis. However, a potentially arising question is that as
long as an input-output model is established, one may derive its state-space realization
and still use state-space-based methods to conduct the control design and analysis.
Indeed, the state-space model can be derived from the input-output model. However,
from a practical viewpoint, the state-space model may sometimes be unsuitable for
designing the controller because the state variables generally do not have explicit
physical meanings. Therefore, addressing the cooperative control problems by using
the input-output models (2.1)-(2.2) is significant.

Communication graph. Let the MAS be described by (2.1)-(2.2). The com-
munications between these N + 1 agents are modeled as a directed graph G = {V, £},
where V = {vg,...,vn} is the set of nodes with vy representing the leader, v;,i =
1,..., N, representing the i-th follower, and & C V x V being the set of edges of G.
The directed edge (vj;,v;) represents a unidirectional communication channel from
agent v; to agent v;, i.e., agent v; can obtain the output information from agent
v;, but not vice versa. The neighborhood of agent v;, i = 0,..., N, is denoted by
N ={v; € V: (vj,v;) € E}. A directed sequence of the edges (vi1,vi2) , (Viz, vi3) 5 - - -,
(vik—1,Vik) is called a path from node v;; to node v;,. A directed tree is a directed
graph where each node except for the root node has a single neighbor, and the root
node is a source node. A spanning tree of G is a directed tree whose node set is V. Its
edge set is a subset of £. Moreover, (v;,v;) is called a self-loop. This study assumes
a simple graph, i.e., the graph has no self-loops or multiple arcs.

2.2. Control objective and design conditions.

Control objective. For the MAS (2.1)-(2.2), the control objective is to design a
distributed output feedback MRAC law solely using local input and output informa-
tion so that the closed-loop system is stable and of the higher-order output consensus
properties:

(23) tgrgo(yl(t)fy()(t))(]) :O7Z = 13 ) Na ] = 07 s 7n*a
where yU)(t) denotes the j-th derivative of y(t).
Assumptions. To meet the control objective given by (2.3), we present the
following assumptions:
(A1) All Z,(s),i=1,...,N, are stable polynomials.
(A2) The relative degree of i-th follower is n; —m; =n* fori =1,...,N.
(A3) An upper bound on n;, denoted as 7, is known.
(A4) The leader input r(t) satisfies 7(t) € L.
(A5) The directed graph G has at least one spanning tree with vy being the parent.
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It is well known that the usual MRAC systems require the zeros of the con-
trol system to be stable, which is a consequence of zero-pole cancellations occurring
in the MRAC systems. In this case, the MRAC law will cancel and replace the
control system’s zeros with the reference model’s. For stability, such cancellations
must be stable. In other words, the control system must be minimum-phase. More-
over, the control system’s relative degree must equal the reference system’s degree to
guarantee model matching, which is necessary for tracking target even if when the
system parameters are known [37]. For a distributed MRAC design, Assumptions
(A1) and (A2) are regarded as extensions of the minimum-phase condition and the
model-matching condition in the usual MRAC systems. Moreover, Assumption (A3)
is required for constructing a parameterized system model for parameter adaptation.
Besides, Assumptions (A1)-(A3) are the traditional design conditions in the usual
MRAC systems, and Assumption (A4) is a relaxed design condition on the reference
system, which is used to ensure higher-order output consensus. Finally, Assumption
(A5) is a typical design condition for the output consensus control that is commonly
used in the literature.

2.3. Comparisons and technical issues to be solved.

Comparison to cooperative output regulation. The linear cooperative output reg-
ulation problem was first formally formulated and solved using a distributed observer
approach on a static network in [32] and then on a jointly connected switched network
in [33]. In order to address the design condition where each follower possesses knowl-
edge of the leader’s system matrix, the literature [2] investigates the linear cooperative
output regulation problem on static networks using an adaptive distributed observer
approach. The output regulation based cooperative control has been systematically
studied in the control community. Generally speaking, the standard output regulation
based cooperative control method typically relies on the existence of a solution for
the regulator equations, which fundamentally distinguishes it from the well-known
MRAC technique. This is the reason why the establishment of a fully distributed
output feedback MRAC framework for cooperative control remains an imperative,
necessitating our attention and focus.

Comparison to distributed MRAC. As mentioned in the Introduction, distributed
MRAC methods are now applied to multi-agent linear time-invariant systems. How-
ever, the existing literatures [5, 21, 30, 47, 50] mainly focus on the MASs described
by the state feedback for state tracking. The followers’ models are of the basic form:
&; = Az + Biug, 1 = 1,...,N, where x; € R™ and u; € R™, i = 1,..., N, are the
state vectors and input vectors of the followers, A; and B;, i = 1, ..., N, are unknown
constant matrices of appropriate dimensions. The leader model is of the basic form:
&9 = Apxo + Boug, where xy € R™ is the state vector, ug € R™ is the bounded
reference input, and Ag and By are constant matrices, with Ay being stable.

The control objective is to find a distributed MRAC law that ensures closed-loop
stability and asymptotic state consensus lim; o (x; — o) = 0. To achieve the control
objective, an essential condition, known as the structural matching condition, is as
follows. (i) For each follower v;, there exists a constant matrix K7;; and a nonsingular
constant matrix K}, of appropriate dimensions such that

(2.4) Aci = Ai + BiKyj, Bei = BiKj;,

where Ag; is a stable and known matrix, and Be; is a known matrix for ¢ = 1, ..., N.
(ii) For each pair of (v;,v;) € &, there exists a constant matrix KJ;; and K3;; of
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6 J. GUO, Y. ZHANG AND J. F. ZHANG

appropriate dimensions such that for i =1,..., N,

(2.5) Aj = A + BK3;, Bj = B[,

The readers can refer to [30] for further details on the matching condition (2.4)-
(2.5). Note that state consensus is a strong control objective. When state consensus is
achieved, the followers can track the arbitrary behaviors of the leader, which requires
structural similarities among all agents. Such structural similarities are modeled as the
matching condition (2.4)-(2.5). However, the latter condition is restrictive for many
applications, and largely restricts the application range of the consensus methods.

Technical issues to be solved. Considering that it is sufficient to achieve output
consensus for most applications, this paper focuses on addressing how to develop a
fully distributed output feedback MRAC scheme to ensure asymptotic output con-
sensus for the MAS (2.1)-(2.2) without requiring the restrictive matching conditions
just like (2.4)-(2.5). The basic idea of MRAC is to design an adaptive control law
that ensures the closed-loop system matches any given reference system. Inspired by
this, for the distributed output feedback MRAC, the agents that are connected to the
leader follow the reference system (i.e., the leader model). However, the agents that
are not connected to the leader do not have an available reference system. Thus, the
first technical problem is designing virtual reference systems for the agents, especially
for those not connected to the leader. Then, a potentially arising question is how to
guarantee that the agents with virtual reference systems can achieve leader-follower
output consensus. Moreover, the third technical problem is accomplishing the higher-
order tracking properties (2.3). In a word, to establish a fully distributed output
feedback MRAC framework, the following technical problems must be solved:

(i) How to design the virtual reference models for all followers and construct the
plant-model matching equations, especially those that are not connected to the
leader, by solely using the local input and output information?

(ii) Given that the agents could follow the virtual reference systems asymptotically,
how to eventually realize leader-follower output consensus for the whole MAS
(2.1)-(2.2)?7 Especially, asymptotic output consensus is required, which leads to
more difficulties for adaptive control design and analysis.

(iii) The current results of the distributed leader-follower control indicate that the
asymptotic state/output consensus property can be ensured. However, under
the usual design conditions, how to ensure some higher-order output consensus
as shown in (2.3)7 To our knowledge, this problem has never been addressed in
the literature.

3. Distributed output feedback MRC design. This section provides the
basic idea of the distributed output feedback MRAC framework through a distributed
model reference control (MRC) design, assuming all system parameters are known.
The design contains four steps: (i) deriving the distributed MRC law structure, (ii)
constructing virtual reference inputs, (iii) calculating the control law parameters, and
(iv) conducting system performance analysis.

Step 1: Distributed MRC law structure. Given that all system parameters
are known, we design the distributed MRC law for the i-th agent, i =1,..., N, as

(3.1) ui(t) = 07 wii(t) + 057 was (1) + O3,wsi(£) + O30, (L),
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where 0}; € R"™1 05, € R"1 05, € R and 65, € R are constant parameters to be
specified, and

() a(s) _ A—1 ) a(s) ] A—1
(3.2) wi(t) = Aoi(s) [ui](t) € R* ™, wai(t) = Aoils) [y:] () € R",
with a(s) = [1,s,..., sﬁ_Q]T e R 1 and Agi(s) = s" 1 HAS 58" 24 A s+,

representing an arbitrary monic Hurwitz polynomial. The signals wy;(¢) and we;(t)
are obtained through filtering w;(¢) and y;(¢) by the stable filter Aa(_—?)s), respectively.

Remark 3.1. Since A.;(s) in (3.2) is monic and of degree 7o — 1 and the maximum

degree of the vector a(s) is i — 2, each element of the vector A“CE?)&) is strictly proper,

i.e., the degree of the numerator a(s) is strictly less than that of the denominator
Aci(s). Thus, there does not exist any algebraic loop in the control law (3.1).

In traditional MRAC, ws;(t) corresponds to the reference system input. Since
each agent receives signals from its neighbors, and the number of neighbors N; is
known, we design ws,(t) as:

LS, weN

(3.3) wyi(t) = 4 Vi R
T(t), UO E A/-ia

where 7;(t), j =1,..., N;, are auxiliary signals to be designed.

From (3.3), for agents connected to the leader, the leader’s input r(t) is directly
used as ws;(t), enabling them to follow the leader as in traditional MRAC. For agents
not connected to the leader, r(¢) is unavailable. To solve this, we design the auxiliary
signal Ni Zvi en; Ti(t) as ws;(t), which acts as a virtual reference. Designing this
virtual reference and ensuring all agents can follow the leader are key challenges
addressed in this paper. Next, we explain how to obtain 7;(¢) to construct ws;(t).

Step 2: Virtual reference input construction. As mentioned in Appendix
A traditional model reference control requires an additional reference signal r(t) =
P, (8)[ym](t), which is the sum of some derivative information of the tracked signal.
Inspired by this, if the derivatives yﬁk)(t), k=1,...,n" with respect to the j-th agent are
known, we design r;(t) as
(34) r(t) = W(s)[y;](t)
with W(s) = §™ 4 18" ~' 4 -+ 4+ 15 + 1 being some chosen monic Hurwitz
polynomials of degree n*. However, y§k) (t) is generally difficult to be obtained. Hence,
using (3.4) to obtain r;(t) is inappropriate. Thus, we present a construction method
to obtain r;(t) using only u; and y;. For simplicity, we change the subscript from j
to i, and define two vectors:

0 = lkpizios kpizit, - - kpiziom,—1, kpi, —Pio, —Pi1,
(35) ceey T Pin;—25 _pi,ni—l]T S Rni+mi+1a
1 S sgmi—l
¢i (t) - Aei(s) [UZ](t)7 Aei (S) [ul](t)v teey Aei(s) [ul](t)7
g 1 s
A 0 gy B0 g ),

ni—2
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8 J. GUO, Y. ZHANG AND J. F. ZHANG
where Agi(s) = 8™ + A, ;8™ 4o+ A s+ A§) representing an arbitrary monic
Hurwitz polynomial. Then, ignoring the exponentially decaying signal, the system
(2.1) can be expressed as

Aini—1(s) T
. J(t) — =h () = 0:T g (t
(37) () = 2L 0) = 7 ot
with A, —1(s) = XY, 8™ 71+ -+ A s + X5, To design 7;(t), we first give the

following lemma demonstrating a key property of ygj) (t),i=1,...,N,j=1,...,n"

LEMMA 3.2. For yw

7

L, ﬁk(s)[ul](t),k =1+mg,...,5 +m, 00, 0i(t), and yi(t).

(t), 7=1,...,n", it can be expressed by y(k)(t),kzo,...,j—

(3

Proof. The proof is given in Appendix B. _ O
Based on Lemma 3.2, we recursively obtain that yi(])(t)7 7 =1,...,n", can be
expressed by ﬁk(s)[uz](t) for k =1+ my,...,5+my, 05, ¢i(t), and y;(t). Thus, we
express yij)(t),j =1,2,...,n* as
3.8 i = Hy (i il ooy S ), 0 )
( ) Y J <y7Aei(S) [u ]7 7Aei(8) [u ]7 p7,7¢

As demonstrated in the proof of Lemma 3.2, H;; is obtained by applying a filter
related to A.;(s) to the original input-output system. Its form depends solely on
Aci(s). If Aci(s) is predetermined, then H;j is a known mapping. Consequently,
Hij,i=1,...,N,j=1,...,n% are known and smooth mappings with respect to its
variables. It should be noted that from (3.4), we derive an analytical expression for
ri(t) as

n* gltmi gitmi .
(3.9) Ti ngoijij (yivAei(s)[ui]a-'-leei(s)[ui]vemad)i) )
where ¢y, k = 1,...,n*, are constant parameters with ¢,- = 1 such that s” +

Ype_18" "L 4 - 41l s+ 1o is a Hurwitz polynomial.

Remark 3.3. From (3.9), we see that r;(t) depends on the unknown vector ;..
For the adaptive control case, we construct an estimate of r;(¢) that will no longer
depend on any unknown information (see Section 4). Besides, to estimate the higher-
order derivatives of y;(t), one may employ a standard high-gain differential observer
[12]. Even though the high-gain observer design is simple and easy to implement,
using this observer is difficult to realize asymptotic output consensus, and involves
the high-gain issue. We propose a linear parametrization-based estimation method
based on this consideration to derive the r;(t)’s estimate and achieve the asymptotic
output consensus. Finally, it is worth noting that by (3.1), (3.3) and (3.9), it is known
that each agent’s controller makes use of only its own and its neighbors’ information
and does not need the global information of the leader.

From (3.1), it is evident that the nominal control law for each follower solely
relies on local input and output information, and does not depend on global leader
information.

Step 3: Calculation of 67, 03,, 03,, and 605,,. Now, we construct some plant-
model output matching equations from which 67;, 65,, 85;, and 03, can be calculated.
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Motivated by the usual output feedback MRC in [37], we derive the distributed
version of the plant-model output matching equations as follows:

LEMMA 3.4. For the i-th agent connected to the leader, there exist constants
03:,05;, 050, 05; such that
(3.10) 077 a(s)Pi(s) + (657 als) + 030;Mci(s)) kpiZi(s)
=Aci(s) (Pi(s) = kpibl3; Zi(s) P (s)) ;

and for the i-th agent not connected to the leader, there exist constants 07;,05,,05;, 05,

such that
(3.11) 077 a(s)Pi(s) + (657 als) + 030;Mci(s)) kpiZi(s)
=Aci(s) (Pi(s) = kpith3;Zi(s)¥(s))

where a(s) and V(s) are defined below (3.2) and (3.4), respectively.

Proof. The proof is similar to that of Lemma A.2 in Appendix A, and thus,
omitted here. For details, one may refer to [37]. O

Remark 3.5. These matching equations always have non-trivial analytical solu-
tions, and one can choose the solution {63,,03., 05, 0%} to (3.10)-(3.11) from

(3.12) 077 a(s) = Aei(s) — Q()Zi(s), 05] als) + O59;Aci(s) = —05,Ri(s),

and 63, = kii’ where Q(s) is the quotient of %&”(S) and R;(s) = Aei(s)Pr(s) —

Q(s)P;(s) for (3.10), and Q(s) is the quotient of %Z;I;(s) and R;(s) = Aui(s)¥(s) —
Q(s)P;(s) for (3.11).

The parameters 67, 05;,05,;,03; in Lemma 3.4 can be called distributed matching
parameters, as with these parameters, the distributed MRC law (3.1) matches all
followers to the leader, as shown subsequently.

Step 4: System performance analysis. To proceed, we first define the local
output tracking error as

(313) () =uilt) ~ - 30 w0, =1, N,

v UJENi

where NN; is the number of the neighbors of agent v;. Such a local output tracking error
measures the disagreement between the follower i and the average of its neighbors on
the output because it is essential to characterize the consensus level of the follower
and the leader. The motivation of defining such a local state tracking error is shown
as follows:

LEMMA 3.6. Under Assumption (A5), if e;(t) is bounded, then y;(t) is bounded
for alli = 1,...,N. Further if for any j = 1,...,n*, lim;_, e(])(t) = 0 holds

%

(or exponentially) for all i = 1,...,N, then lims oo (y;(t) — yo(t))(j) = 0 holds (or
exponentially) for alli=1,...,N.

Proof. Performing a proof similar to that for Lemma 4.1 in [29], one can verify
this lemma. (]

From Lemma 3.6, global higher-order leader-follower consensus properties can
be achieved as long as the higher-order derivatives of all local tracking errors (3.13)
converge to zero as time tends to infinity. According to this lemma, the following
theorem clarifies the closed-loop stability and output consensus performance.
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THEOREM 3.7. Under Assumptions (A1), (A2) and (A5), the distributed MRC
law (3.1) configured with 05;,0%;, 05,05 in Lemma 3.4 ensures that all closed-loop
signals are bounded and the tracking errors y;(t) — yo(t), i = 1,...,N, and their deriv-
atives up to the n*-th order converge to zero exponentially ast — oo.

Proof. For all agents v; € {v; : vg € N;}, the leader vy can be regarded as the
reference output. Thus, based on Theorem A.3 in Appendix A , one can verify that
the input w;(t) = 077 w1 (t)+ 057 wai(t) + O30,yi(t) + 05,7(t) ensures that the signals
of the agent v; are bounded, and y;(t) — yo(t), i = 1,...,N, and their derivatives up to
the n*-th order converge to zero exponentially.

For the agent v; ¢ {v; : vo € N;}, by Lemma 3.4, we first prove that e;(¢)
converges to zero exponentially. Operating both sides of (3.11) on y;(¢), we have

0;a(s) Pi(s)[yi) (t) + (03;0(s) + O20iMei(5)) Fpi
(3.14) Z( Myil (O)=Aci(s)(Pi(5) = kpifs3i Zi (s) ¥ (s)) [y:] (2)-

Moreover, with some manipulations on (3.1), we have

Aci(s)[u](t) = 0F;a(s)[wi(t) + 03;a(s)[yi) (t) +93iAc¢(8)‘1’(8)[% >yl

v vj EN;
(3.15) +Aci(5)020[yil (t) + Aci(s) [ea..] (1),

where €p_, (¢) is an exponentially decaying signal associated with the initial conditions.
Then, we have

kpiZi(s)Aei(s) [wi] (8) = Pi(s)Aei(s) [yi] (1)
= kpiZi(8)Aci(5)020i [yi] (8) + kpiZi(s)Aci(s) [en.] (1)

i Za ()5 A () W) 5 7 9]0
v vj E./\fi

(3.16) +hpi Zi(s) (01;a(s) [ui] (t) + 03;a(s) [yi] (1)) -

Combining (3.16) and (3.14), together with P;(s)[y;](t) = kpiZi(s)[w;](t), indicates
that

B17)  Ai(9)¥(s)Zi(s)lyi — 5= Z yil(t) = —kpiZi(s)Aci(s) [ea.,] (2).
Ni v ENG
Since Ai(s), U(s) and Z;(s) are all stable polynomials and the degree of ¥(s) is n*,

*

we conclude that for [ =0,1,...,n",

1
(3.18) (yi(t) — A Z y;(t))Y = 0, exponentially.
i vj EN;

According to Lemma 3.6, (3.18) suggests that the higher order exponential leader-
follower consensus (2.3) is achieved. This also implies that y;(t) € L* due to the
boundedness of yg(t).
Now, we prove u;(
we have kp; Z;(s)?Aei(s

€1:(t) = —kpiZi(s)Aci(s

derive

t), it = 1,...,N, are also bounded. Using (2.1) and (3.17),
JU(s)u(t)] = Pi(s )ei(8)Zi(s) 57 X, en, Ti)(t) + €2i(t) with
) [ea,;] (t). Since A.;(s), ¥(s) and Z;(s) are all stable, we can

Uz(t) = kpZZfD(lS(;)\I/Z(S) NLZ v;\/i T (t) + €9,(t),
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where €5;(t) is an exponentially decaying signal associated with initial conditions.
Note that kpzpz(i(:)\p(s) is stable and proper, i.e. the degree of the numerator P;(s) is
not greater than that of the denominator ky; Z;(s)¥(s). Thus, if > . 7 € L™,
then u;(t) € L°°.

Let I; denote the length of the longest directed path for the leader vy to the
node v;. Suppose that there exists a follower vy such that r is unbounded. Then,
there exists a neighbor vy, of v such that Ty, is unbounded and Iy, < l. From
Assumption (A5), and by repeating this analysis for up to lj steps, we conclude
that the reference signal of the leader r(¢) is unbounded, which is a contradiction.
Therefore, r;(t) € L, i =1,..., N, and so are the control u;(t). This completes the
proof. O

Remark 3.8. Equation (3.17) shows that the convergence rate is influenced by the
roots of a certain polynomial, with larger roots leading to faster convergence speed.
However, large roots can cause initial output fluctuations. Therefore, the choice of Ag;
and A.; should consider both the convergence speed and the transient performance of
the system.

So far, we have provided a basic distributed MRC framework for the MAS
(2.1)-(2.2) which is fundamental for the distributed MRAC design addressed next.

4. Distributed output feedback MRAC design. This section develops a
distributed output feedback indirect MRAC scheme for the MAS (2.1)-(2.2), where
the parameters p;;, z;5, and kp; are unknown. Specifically, we construct the distributed
output feedback MRAC law, with the distributed indirect MRAC design procedure
comprising five steps: (i) distributed MARC law construction, (ii) plant parameter
estimation, (iii) controller parameter calculation, (iv) virtual reference input signal
estimation, and (v) stability performance analysis.

Step 1: Distributed MARC law structure. The distributed MRAC law is
designed as

(4.1) ui(t) = 05 (t)wri(t) + 03, (F)wa; (t) + O3 (£)dsi (t) + O20i ()yi (1),

where 61;(t) and 62;(t) are estimates of 67; and 03, in Lemma 3.4, respectively, 63;(¢)
is an estimate of 7, wi;(t) and wo;(t) are defined in (3.2), and @s;(t) is an estimate
i

of w3i(t) in (33)

Step 2: Plant parameter estimation. Consider the i-th follower in (2.1).
The signal ¢;(t) in (3.6) can be obtained through filtering w;(¢) and y;(t) by the
stable filter 2L with ai(s) = [1,5,...,5"i_2]T and A.;(s) below (3.6). Similarly,

Aei(s)
1\/\"77(;)(5)[%}@) in (3.7) can be obtained through filtering y;(¢) by the stable filter
Nin;—1(8)
AE,;(S)

Let 0,i(t) be an estimate of 6§, and define the estimation error as

Ai ni—1\S
(4.2) =500 ~(0) + 5 o), 0> o
To update 0,;(t), we use the following gradient algorithm:
: T (t)e; (t
(4.3) Opi(t) = —M, Opi (to) = boi,t > to,

m; (t)

7
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where I'; = dlag {Fli,ymﬁl,I‘gi} with I'y; € Rmixmi, 'y = F,{z > O,’}/mi+1 > 0 and
[y € R"X™ Ty; = T3, > 0, fp; is an initial estimate of §;; € R™*™+1 and

(4.4) m;(t) =1/1+ kol (t)gi(t), x> 0.
From (3.5), we denote 8,;(t) as

— — T

opz(t) = kpizio(t)v' L) kpizim7i_1(t)a épi (t)a _ﬁio (t)7 HES) _ﬁi,ni—l(t)

Thus, we construct the estimates of P;(s) and Z;(s) for the i-th follower as

Pi(s,pi) = 8™ 4 Pim,—18" " 4+ + Pirs + Pio,
(4.5) Zi(s,4) = 8™ + Zim,18™ T e B+ Zio,
where 2; = [2i0,. .., Zim,—1]" with 2;; = % and p; = [Pioy- -, Dim;—1)7 are the
pi
estimatfzs of z¥ = [2i0,.-+,2im;—1)]" and p} = [pio,---,Pin,—1]7, respectively. To
ensure kp;(t) # 0 during parameter adaptation, the parameter update law (4.3) needs

to be modified by introducing some robust term, such as parameter projection, dead-
zone modification, o-modification, and so on. We omit the details due to the paper
length constraints.

For the parameter 6,;(t), the following lemma clarifies some properties crucial for
stability analysis.

LEMMA 4.1. The adaptive algorithm (4.8) guarantees (i) 0, (), 0,i(t), ;,((tt)) are
bounded and (i) 51(('5)) and 0,;(t) belong to L.

m;(t

Proof. The proof is similar to Lemma 3.1 in [37], and so, it is omitted here. O

Note that the regressor vector ¢;(t) is not required to be persistently exciting, and
thus, we cannot ensure that the estimation errors €;(t) converge to zero. Nevertheless,
this paper shows that the proposed distributed MRAC law (4.1) still ensures closed-
loop stability and the tracking properties shown in (2.3).

Step 3: Controller parameter calculation. For the i-th agent connected to
the leader, the controller parameters {01;(t), 02;(t), 020i(t), 03:(t)} are obtained from

95@(8)?1‘(8,[2) + (9%;&(8) + 920iAci(S)) kpiZi(S, ZAl)
(46) = AW(S) (131(5,]51) — ]%piegiZAi(S, ZAi)Pm(S)) 5
and for the i-th agent not connected to the leader, the controller parameters are
obtained from
0Tia(s)Pi(s, 1) + (03;0(5) + O20iMci(s)) kpiZi(s, 20)
(4.7) = Nei(s) (Pils. i) — hyibl Zils, 2) 9(5))
Regarding how to specifically derive 01;(t), 02;(t), 020i(t), 03:(t), the reader can refer
to (3.12).
Step 4: Virtual reference input signal estimation. The signal ws;(t) in
(4.1) is designed by
1 .
R ﬁ Z rj(t)7 Vo ¢M)
(48) w;),i(t) = b ujeN;
r(t), vo € N,
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where 7;(t) is an estimate of the signal r;(¢). For simplicity, we change the subscript
of 7;(t) from j to ¢, and design #;(t) as

1+m; 5J+ml

(49) ”A’z :]2::0 ’l,[}jHij <yi7 m[ui], ceey m{ui], Gm, ¢,L>

Now, we derive the following lemma to demonstrate a convergent property of the error
7;(t) — r;(t) under some particular conditions.

LEMMA 4.2. For the gradient algorithm (4.3), if mi(t) € L>, u;(t) € L®and
¥i(t) € L™, then we have #;(t) € L* and

(4.10) tlirrolo(ri (t) —ri(t)) = 0.
Proof. The proof of this lemma is long. Thus, we present it in Appendix B to
avoid disrupting the reading flow. O

Step 5: System performance analysis. Based on the above derivations, we
provide the main result of this paper, which demonstrates that the closed-loop stability
and asymptotic higher-order output consensus are achieved by using the distributed
MRAC law (4.1).

THEOREM 4.3. Under Assumptions (A1)-(A5), the distributed output feedback
MRAC law (4.1) ensures that all signals in the adaptive control system comprising
(2.1), (2.2), (4.1) and (4.3) are bounded, and fori=1,... N,

(4.11) lim (yi(t) - v =0, k=0,... n"

Proof. First, we prove that the agents connected to the leader can track the
leader and generate a virtual signal #(¢) satisfying lim; ,oo(7(t) — r(t)) — 0 and
f(t) € L°°. For the i-th agent connected to the leader, the control law becomes
Us; (t) = 9%; (t)wli (t) + 9%;(75)&)21‘ (t) + 93i(t)’l“(t) + 050, (t)yz (t) Hence, from Theorem A.4
in Appendix A, we have the closed-loop stability and lim; o (y;(t) — yo(t)) = 0.
Under Assumption (A4), we have ;(t) € L> and y;(¢t) € L*°. Following Lemma
4.2, and combined with the closed loop stability yields lim; oo (7;(t) — 7(t)) = 0 and
7i(t) € L.

Second, we prove that for the i-th agent, if the conditions limy_, o (7 (t)—7;(t)) = 0
and f"j (t) € L™ are satisfied for any v; € N;, then the following properties hold

(4.12) tim () — 1 3 wi(0)® =0,

t—o0 i
'UjeNi

for any k = 0,...,n*i=1,...,N and #;(t) € L*°. In view of the control (4.1), for
any v; € N, define

(413) O

Then, ignoring the exponentially decaying signal, it follows from (4.13) that 7;(t) =
U(s)[9;](t). Substituting it into (4.8) yields ws;(t) = \I'(s)[N% Evj e U5](t). Based on
Theorem A.4 in Appendix A with u;(t) = 07, (t)w1(t) + 01, (H)wai (t) + 03:(t)@3:(t) +
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020 (t)y;(t), all signals with respect to the i-th agent system are bounded and
limy o0 (yl(t) — Ni Zv]_ en; U (t)) = 0. Moreover, we further verify that

(k)
(4.14) lim | y;(t) — — 7 =0,k=0,...,n"

t—o00

Proving (4.14) is quite similar to that of Theorem 3.1 in [38], and thus, omitted here.
Since

tm (1) — = 3w (0)Y

v 'Uje-/\/i
1 1 1
(415) = lim (yi(t) — = ; ()™ + lim (< (g (75 = ()™,
t— 00 Y ]Vz UjGZ/\fi Y t— o0 Nz vjEZ/\fi \IJ(S)

it is sufficient to prove that for any v; € N;, the following equation holds:

1
(4.16) t@&(@ [ —ry] ()" = 0.
Let ¢;(t) = 7j(t) —r;(t) and the k-th order time derivative of ﬁ[sj](t) is #Z)[ej](t)-
Thus, with ﬁz) being stable and proper, if limy_, o (7;(t) — r;(t)) = 0 for v; € N,
the property (4.16) holds. Moreover, if #;(t) € L for v; € Nj, then u;(t) € L> and
9i(t) € L. From Lemma 4.2, it follows 7;(t) € L. '

Third, we prove that lim; oo (7;(t) — 7;(t)) = 0 and 7;(t) € L* for i = 1,..., N.
We demonstrate that each agent satisfies fz(t) € L*°. Let l; denote the length of the
longest directed path for the leader vy to the node v;. Suppose there exists at least
one agent v such that ?k (t) is unbounded. Then, there exists a neighbor Vk; of vy,
such that r;kj is unbounded and Ij; < I;. Repeating this analysis for up to l;, steps, it
concludes that the reference signal of the leader #(t) is unbounded, which contradicts
Assumption (A5). Therefore, 7(t) € L>°, i = 1,...,N. Then, we get m;(t) € L™,
ui(t) € L>®and yj;(t) € L and Lemma 4.2 indicates lim; o (7i(t) — 74(t)) = 0 and
7 (t) € L.

Finally, we demonstrate the tracking convergence and the higher-order properties.
From the second and third steps, we get lim; o (y;(t) — Ni ZU,EM y; (1)) =0,
for any £k = 0,...,n*,4 = 1,...,N. This together with Lemma 3.6 indicates that
limy s o0 (y: () —yo(t))(k) =0foral k=0,...,n" and i = 1,...,N. The proof is
completed. O

Remark 4.4. Theorem 4.3 addresses the tracking performance in the presence of
unknown parameters. If the reference signal ro(t) meets certain additional conditions,
such as being sufficiently rich of order 27, then the tracking error can further converge
to zero exponentially. For more details, please refer to reference [10].

So far, we have established a fully distributed output feedback MRAC scheme,
where the adaptive control law for each follower only relies on its local input and
output information, and the asymptotic leader-follower output consensus is achieved.
Particularly, the proposed adaptive control scheme overcomes the restrictive structural
matching conditions, e.g., (2.4) and (2.5), commonly used in the existing distributed
MRAC literature. Moreover, the higher-order leader-follower output consensus is
achieved without using the persistent excitation condition as shown in Theorem 4.3.
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5. Simulation examples. This section presents an example to demonstrate the
design procedure and verify Theorem 3.7, Lemma 4.2 and Theorem 4.3. We study the
consensus performance of four followers and a virtual leader for the nominal control
case and adaptive control case, and their associated communication graph is shown

in Fig.1.
P
(0)—(2)

F1a. 1. Communication graph for nominal control design.

Simulation system. Consider the following MAS containing four followers mod-
eled as

(5.1) Pi(s) [yl (t)=kpi Zi(s)[ui] (), t > 0,i = 1,2,3,4,

where Py(s) = (s+1) (s — 3) , Z1(s) = s+3, Pa(s) = (s + 3) (s = 1) (s + 5) . Za(s) =
(s4+2)(s+1),Ps(s) = (s —1)(s+2),Z5(s) =s+ 1, Ps(s) = (s — 1) (s — 3) (s + 2),
Zy(s) = (s + %) (s + i), and kp1 = —1/3,kpa = 2,kp3 = —3, kpsa = 4. Note that the
followers’ models considered in this simulation are unstable and heterogeneous. The
leader model is chosen as

(5.2) Yo(t) = Win(s) [ro] (t)
with W, (s) = 1/Pp,(s) = 3_%1 and yo(t) = 5sin(2t). Thus, we calculate that r(t) =
10 cos(2t) + 5sin(2t).

Nominal control case. When the parameters are known, we utilize distributed
MRC law to achieve convergence.

Distributed MRC' law specification. Based on (3.1), the distributed MRC law for
the MAS (5.1)-(5.2) is designed as

(5.3) i () =077 wii(t) + 03] wai(t) + O30,4: () + O%5wsi(£),

where wj;(t),j = 1,2,3, can be derived from (3.2) and (3.3) with Aci(s) = s +
1,Aw(s) = s2+1.554+0.5,Ac3(s) = s+ 1, Aes(s) = s +1.55+0.5, and ¥(s) = s+ 1.5.
Moreover, by Lemma 3.4 , the matching parameters in (5.3) are calculated as

01, = 0.5, 03, =0, 059, = 4.5, 05, = =3, 0}, = [-53.5, —53.5]7,
035 = [—33.625, —13.75]7, 03, = 26.25, 04, = 0.5,
07, = 0.6667, 035 = 0.6667, 0345 = 0.5, 05 = —0.3333,
¥, = [0.4167,0.9167]7, 03, = [0.3750, —0.3750]7, 65y, = —0.6250, 05, = 0.25.
System responses. The initial outputs of the followers are chosen as [y;(0), y2(0),
y3(0),y4(0)]T = [3.5,6,0,8.3]7. Fig.2 shows the response of the outputs y;(t),i =
1,...,4, of the followers and the trajectories of the derivatives of the leader and

followers’ output. Fig.2 highlights that the desired output higher order consensus
performance is ensured. The simulation results verify the theoretical results.

This manuscript is for review purposes only.



16 J. GUO, Y. ZHANG AND J. F. ZHANG

40 40
----u ----n
30 Y2 30 o
AR Ys l Y3
P —mm- U 20 s
20 (v /i w ‘.. i
| 10 ¢
! |> " )
10 i §)
L orl
0 \ Al
S -10 Py
10 -20
0 10 20 30 0 10 20 30
time(sec) time(sec)

Fic. 2. Trajectories of the five agents’ outputs and derivatives.
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Fic. 3. Trajectories of the parameter adaptation.
587 Adaptive control case. To verify Lemma 4.2 and Theorem 4.3, consider the

588  system (5.1)-(5.2) where the parameters are unknown.

589 Distributed MRAC law specification. Based on (4.1), the distributed MRAC law
590 for the MAS (5.1)-(5.2) is designed as

501 (5.4) w;(t) =0T, (1) wii (£) + 02 (£)wai (£) + O20i (£)ys () + O3:(t) @34 (1),

where wj;(t),7 = 1,2, can be derived from (3.2) with Ac(s) = s+ 4, Aea(s) = s> +
55 + 6,Ae3(s) = s+ 5, Aea(s) = 82+ 7s + 12, and ¥(s) = s + 1.5. Moreover, to
obtain the adaptive parameters 60y;(t), 82:(t), 020i(t), 03:(t) in (5.4), first by (4.3), we
obtain the estimates of ¢, defined in (3.5) with 'y =T's = 101444,T2 = I'y = 101gx6,
and A (s) = s2 + 35 + 2 Aeg( ) = s34+ 1.8335% + s + 0.167, A3(s) = s% + 1.333s +
0.333, Aea(s) = 53+1.8335245+0.167, where ¢;(t), €;(t) and m;(¢) can be derived from
(3.6), (4.2) and (4.4), respectively. Then, 01;(t), 02;(t), 020i(t), 03;(t) can be calculated
by (4.6) and (4.7). Next, we specify the signal (4.8) as

W31 (t) = Waa(t) = r(t), was(t) = 1/2(71(t) + 7a(t)), waa(t) = 1/2(72(t) + 73(1)),

This manuscript is for review purposes only.
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Fic. 5. Trajectories of the followers’ inputs.

where

SAj’nfl(S)
Ac;(s)

with ¢;(t) defined in (3.6) and Aj(,—1)(s) defined below (3.7).

7(t) =05 (t)s[e;](t) + [y;](t) + 1.5y;(t),j = 1,2,3,4,

System responses. The initial outputs of the followers are chosen as [y1(0), y2(0)
,y3(0),54(0)]7 = [-1,2,3,1]7. Fig.3 displays the first element of the adaptive pa-
rameters {01;(t), 02;(t), 620:(t), 03:(¢t)} in (5.4) and Fig.4 presents the responses of the
outputs y;(t),i = 1,...,4, of the followers. Fig.4 reveals that the desired output
consensus performance is ensured. Besides, Fig.5 shows the trajectories of the fol-
lowers’ inputs, and Fig.6 displays the consistency of the estimated virtual reference
signal. From Fig.6, Lemma 4.2 is well verified. Fig.7 illustrates the trajectories of the
first derivative of the leader and followers’ output, highlighting that the higher-order
properties in Theorem 4.3 are well supported by the numerical example. Overall, the
simulation results have verified the theoretical results for the adaptive control case.
Here we provide only numerical examples, while how to apply the proposed method
in a real application is currently under investigation.

6. Conclusion. This paper proposes a fully distributed output feedback MRAC
method for a general class of linear time-invariant systems with unknown parameters.
The developed architecture overcomes the restrictive matching condition commonly
used in the existing distributed MRAC methods. Our adaptive control law solely relies
on local input and output information and ensures global higher-order leader-follower
output consensus. Several simulation results verify the validity of the proposed adap-
tive control method. Nevertheless, how to solve the issues when the MAS (1)-(2)
with uncertain switching topologies by using a distributed output feedback MRAC
framework should be further studied.
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F1G. 7. Trajectories of the agents’ output derivatives.

Appendix A. Some useful lemmas and theorems. The following lemma
establishes a crucial link between the square integrability property of a function and
the asymptotic convergence of an associated error signal. Specifically, it states that
if a function f(¢) has a bounded derivative and the integral fo f2(t)dt is finite, then
f(t) asymptotically approaches zero as t — co. This lemma is a spemﬁc application of
a more general result known as Barbalat’s Lemma, which guarantees the convergence
of certain types of functions under the given conditions [10].

LEMMA A.1. [37] If f(t) € L™ and f(t) € L2, then limy_o f(t) =0

Now we present some well-known results of traditional indirect MRAC of LTI
systems, which are fundamentals in our distributed output feedback MRAC design.
Consider a traditional indirect MRAC system. The control system is

(A1) P(s)[yl(t) = kpZ(s)[u](1),

where y is the output, u is the input, P(s) is the pole polynomial with unknown
coefficients, Z(s) is the stable zero polynomial with unknown coefficients, and &, is
the unknown high-frequency gain. The reference model is

(A.2) P (s) [ym] (t) = r(1).
The indirect MRAC law is
(A.3) u(t) = 0T wy (t) + 0% wo(t) + Oaoy(t) + Osr(t),
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where 6;, i = 1,2,20, 3, are designed parameters, w;(t) = :(fs)) [u](t) € R* 1 wo(t) =

a((ss))[ J(t) € R*~* with a(s) = [1,s,...,s" %] and A.(s) being a monic stable poly-

nomial of degree n — 1.

LEMMA A.2. [37] There exist constant parameters 07,05, 05,05 such that

(A4) 0i7a(s)P(s) + (05" als) + O30Mc(5)) Z(s) = Ae(s) (P(s) — 052 () Prn(s)) -

THEOREM A.3. [37] If the parameters 0; in (A.3) are replaced by 0F, i = 1,2, 20, 3,
satisfying (A.4), then the control law (A.3) ensures that all signals in the closed-
loop system are bounded and y(t) — ym(t) = eo(t) for some initial condition-related
exponentially decaying €(t).

For the adaptive case, there are two steps to design 6;, i = 1,2,20,3: (i) estimation
of the system parameters by an adaptive law like (4.3), and (ii) calculation of the
controller parameters using some linear equations like (31). Under some standard
assumptions, the indirect MRAC system (A.1)-(A.3) has the following properties. All
these properties can be seen in [37]:

THEOREM A.4. [37] The adaptive control law (A.3) ensures that all signals are
bounded and y(t) — ym(t) € L2, 1imy_, o0 (y(t) — ym(t)) = 0.

Appendix B. Proofs of Lemma 3.2 and Lemma 4.2.

B.1. Proof of Lemma 3.2. Using A.;(s) defined below (3.6), we can express
the agent model (1) of the following form

(B.1) yaw—Aﬁ;éfﬂmM>—e”@<>

Then, we have

(B2) ST0) = 057 () + e
T s " gmitl .
- epi Aez<s> [ 1](t)7 ] Aez(s) [ 1}(15)
5 s" 8Ni(n;—1)(8)

Since the degree of Ai(s) is ng, then = ui](t), ..., §ylwl(t) and = [yil(1),

/S\ ne )[yl]( ) can be expressed by ¢;(t).
Moreover, we calculate

§ni s — Agi(s)
Aoi(s) il (t) = wi(t) + T(s)[yi](t)’
SAZ' n.—1)\S sA; i(ng— Az ", — Aei S
s 08Dy < g ey ¢ T e

" AL SNi(n, —1)(8)—Aei . .. .
where gAiA(ES’)(g), and =i K>(Z;) (2) are strictly proper. This indicates that

Lemma 3.2 holds for j = 1.
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662 When 1 < j < n*, we have

o o) = 6570 + g

- P gmiti s gni—1+i T
664 = Hpi m [Ul](t>, ey m[ul](t) Aei(s) [yl}(t), ey Aei(s) [yz](t)

Sin(m—U (s)

665 (B.3) Aci(s)

[y:] (2)-

sgmiti

666 Noting that j < n*, n; = m; + n*, the signals ﬁj(s)[uz](t),,m[ul](t), and

it (ni—1=j)

667 ﬁ](s)[yl](t), ce T(S)[yl](t) can be directly obtained. Moreover, through de-
668 composition, one can obtain
n;—1

thksqk—l—Zlqk =0,...,7—1,

— n;—1

TN, —
670 (B.4) 8(71) Z hysi =tk 4 Zlk

S’L k=0

669

671 Thereby, By [yl](t) j=1,2,...,n* =1 can be expressed by s[y](t), ..., s’ y](t), 07,
672 (3 5), i (5)[ K ) k=14+my,...,5+my, d)i(t), and yi(t).

n;+3j

673 When j = n*, only the signal & s el [u;](t) needs to be considered. Concretely,
- st s s"i—Nei(s . s™i—Nei(s . .

674 Xy [w;](¥) = m[uz}(t) = u;(t) + Ws)()[u,](t) with ﬁs)() being strictly
675 proper, which indicates the conclusion also holds for j = n*. Thus, the lemma
676 follows. O
677 B.2. Proof of Lemma 4.2. We first demonstrate that d;;(¢) converges to

678 s[yi)(t) by showing that the error term involving f,;(t) approaches zero as t — oo.
679  Using mathematical induction, we extend this result to d;x(t), showing that it con-
630 verges to s*[y;](t) for higher orders. Combining these results, we then establish that
681 the tracking error #;(t) — r;(t) converges to zero. The detailed proof process is as
682 follows. With (3.8), we define

gltmi git+mi
683 (B5) d”(t) = Hij (y“ m[uz], e 7[ ] iy ¢Z> s
684 for ¢ = 1,..,N and j = 0,...,n*. Comparing (3.8) and (B.5), we see that d;;(¢),
685 j = 0,..,n%, are the estimates of y;(t), s[y](?), ..., s [yi](t), respectively. Since
686 Opi(t) € L™, wi;(t) € L™, ws;(t) € L™, u;(t) € L>™and y;(t) € L™, it follows that
687 7 (t) € L. Next, we will prove a stronger conclusion that

688 (B.6) dij(t) — s’ [yi](t) = 0, 5=0,...,n

689 We now use mathematical induction to prove (B.6). The proving technique refers
690  to the proof of the higher-order tracking property of MRAC in [38].

691 Let 0pi(t) = 0,i(t) — 0,;. When j = 1, from (B.1), the signal d;; defined in (B.5)

692 can be expressed by

693 (B.7) dir(t) = 07 (t)s[e] (t) + W[yi](t)
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Then, by (B.2) and (B.7), we have d;; (t)—s[y;](t) = éﬁ( )s[oi](t) = HT( ) i(t). Noting
(4.2) and (B.1), €(t) can be expressed by €;(t) = 0;(t)¢p ( ) — 0l ei(t) = é () pi(t).
Then, the derivative of ¢;(t) is é;(t) = 9;(t)¢( ) + ~T( t)oi(t). Notmg (4. ), we have
le() € L and thus ¢;(t) € L>®. Hence, by (4.3), we have 91,1() € L. Since
0,i(t) € L? by Lemma 4.1, then Lemma A.1 indicates that lim; o f,;(t) = 0. Thus,
to prove that d;1(t) — s[y;](t) = 9;( )é5(t) converges to zero, it is sufficient to prove
limy_, o €;(t) = 0. Next, we will prove this property by using the definition of limits,
i.e., for any given 7, there exists a T'= T'(n) > 0 such that |¢(¢)] < 7.

We decompose the signal é;(¢) into two fictitious parts: one being small enough
and one converging to zero asymptotically with time going to infinity. First, two
fictitious K (s) and H(s) are introduced and defined by

where a > 0 is an adjustable parameter. Thus, given K (s), the filter H(s) is strictly
proper (with relative degree one) and stable, and is specified as

1 1(s4a)* —a*
B.9 H(s)=-(1-K S S A
(B.9) (9= K) =T

Moreover, from [28], it is known that the impulse response function of H(s) is h(t) =
L7YH(s)] = e ZZ - tk ¢ and the L' signal norm of h(t) is

(B.10) IMNh=AwWMﬁ=

We choose the filter K(s) and H(s) with &k = 2. Using (B.8) that 1 = sH(s) + K(s),
we divide ¢;(t) into two terms
&it) = slopoi(t) = H(s)s?[0,0i](8) + K (s)[0,01] (¢)
(B.11) = H(s)s?[05;0i](t) + sK(s)[ei] (1)-
By the assumption m;(t) € L> and Equations (B.3) and (B.4), we have ¢;(t), bi(t),

$i(t) € L. By Lemma 4.1,we have 6,;(t),0,;(t) € L. Therefore, noting f,;(t) €
L, it follows

(B.12) s?[05¢:](t) = (6105 + 202:0i + 02,03] (t) € L.

Then, from the above L' signal norm expression of H(s), ||h(-)|[1 = 2, we have

(B.13) H(s)s2[050,)(t)] < 2

a

for any ¢ > 0 and some constant ¢; > 0 independent of a > 0. Wg) now con-
sider sK(s)[e;](t). Since ¢;(t) € L™ and my(t) € L™, then &(t) = 07 (t)pi(t)+
(6,i(2) —O;i)Td)Z-(t) € L. By Lemma 4.1 and m;(t) € L*, we have ¢;(t) € L%
Using Lemma A.1, it follows lim;_, o €;(t) = 0. Therefore, since sK(s) is stable and
strictly proper, then, for any finite @ > 0 in K(s),

(B.14) lim sK(s)[e;](t) = 0.

t—o00
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For any n > 0, set a = a(n) > 2% for the filter H(s). Then, it follows that for any
t>0,

C1
a

(B.15) H(s)s* B0 < = < 1.

Moreover, by lim;_, sK(s)[e;](t) = 0, there exists T = T'(a(n),n) > 0, such that for
any t > 1T,

(B.16) [sK ()[e)()] < 3-

Therefore, due to (B.15) and (B.16), for any ¢t > T

B17) &) < |HEL 00| + K@@ <+ 2 =,

which implies lim;_, o, €;(t) = 0. So far we have proved that

lim (d;1(t) — s[y:](t)) = 0.

t—o0
Given that for all j =1,...,k — 1, k < n*, the following properties hold:
i . — i (1) — I -
(B.13) im0 =0, lim (diy(t) — [3:](1) =0,
where €;,_1)(t) = é;(t) (5"~ ¢3](t)) . We have the following analysis.
k
When j = k, by (B.1), we have s*[y;](£) = 057 s*[¢;] (£) + 20O 013, Define

Aei (S)

SkAi(’I’Lifl) (S)

(B.19) P() = 160, Q) = =" i),
Then,
(B.20) SFlyil(t) = 07 P(t) + Q(1).

For simplicity of presentation, we denote
(B.21) dix(t) = 05,1 P(1) + Q(1),

where P(t) and Q(t) are the estimates of P(t) and Q(t), respectively. Using (B.4),
Q(t) and Q(t) can be expressed by

(B.22) Q) = ]gﬁwlm(t) v ; Il
(B.23) a(r) = ]:Z:éfulldu(t) " ; I )

Then, by (B.22), (B.23) and the properties given in (B.18), we have
(B.24) Jlim (Q() - Q1)) = lim (: hy (dig — o' Lm—](t))) =0.
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Similarly, noting that each element of the vector s*[¢;](t) contains s/~ [y;](t), j =
1,...,k and some filtered signals on y;(t) and u;(t), then by (B.4), (B.18) and similar

~

analysis for the convergence of Q(t) — Q(¢) , it follows lim; .. (P(t) — P(t)) = 0.
Therefore, by (B.20) and (B.21), we have

Tim (dux (1) — $*3i](8)) = Jim G50 P(6) + Jim 65,(0)(P(8) - P(2)
(B25) + Jim (Q() — Q1)) = lim 051 P(0)

We next prove that limy_, o, égi(t)P(t) = lim;_ 0 5;(15) (s*[¢:](t)) = 0. Consider the
signal €;(,_1)(t) = ég;(t) (s*7 i) (t)). Its derivative is

(B.26) Eith-1) (1) = Opi(8)s* (D] (2) + O (1) ™[9] (1).

Since m;(t) € L™ and lim; o 0,i(t) = 0, it follows lim; ;oo H.gi(t)sk_l[q/)i](t) = 0.
Hence, by (B.26), to prove lim; oo éﬁ(t) (s*[¢:](t)) = 0, it is sufficient to prove
limy 00 €;(k—1)(t) = 0. Similar to (B.11), we express é;,_1)(t) as

Ein—1)(t) = s[0F (" [e])](2)
(B.27) = H(s)s*[0p; ("' oa])](t) + sK (s)leige—1)) (D).
By the assumption m;(t) € L™ and Equations (B.3) and (B.4), we have, for k£ < n*,
s%¢;(t) € L°. When k = n*, by the additional assumption u;(t), s (t) € L, we have

skT1¢;(t) € L. Moreover, by Lemma 4.1,we have 6,;(t),0,:(t) € L>. Therefore,
noting 6,,(t) € L, it follows

S8 (6) (5" )I(8) = [B5" " [01] + 2055 [01] + 0555 [01]] (1) € L.

Then, for j = k, similar to (B.13), we have ‘H(s)s2 [éﬁsk’l[@]} (t)‘ < % for some
¢ > 0 independent of a. Since sK(s) is stable and strictly proper, so that, with
limy 00 €5(1—1)(t) = 0, we have lim;_, oo 8K (s)[€;(1—1)](t) = 0. Hence, similar to (B.17),
by choosing suitable parameter a > 0 in H(s) and K (s), it can be shown that for any
n > 0, there exists 7' = T'(n,a) > 0, such that for any ¢ > T', it holds |é;,—1)(t)| < 7.

Therefore, lim; ;o €;x—1)(t) = 0. Then, by lim; éﬁ(t)sk*1[¢i](t) = 0 as estab-
lished above (B.27), and (B.25), we have

(B:28)  Jlim e (t) = lim 0,,(t) (s*[0:](1)) = 0, Jim (dir (1) = s* [y (1)) = 0.
Therefore, by (3.8), (3.9), (4.9), and (B.5), it follows

Fi(t) —rilt) = Yy (dig(t) = 87 [yl (1) —= O,

=0

with 1); defined below (3.9). The proof is completed. O
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